Skip to main content
Log in

Effect of dihydroxy-2-aminotetralin derivatives on dopamine metabolism in the rat striatum

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Concentrations of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum of rats after i.p. injection of apomorphine, N,N-dipropyldopamine and a series of alkylated and/or esterified dopamine analogues of the dihydroxyaminotetralin type.

All compounds tested caused a decrease in DOPAC- and HVA-concentrations. The N-alkylated derivatives had a rapid onset of action, showing a maximal HVA decrease after 15–45 min, after which time the metabolite concentrations slowly returned to control values. In addition, the dihydroxyaminotetralins, especially N,N-dipropylamino-5,6-dihydroxytetrahydronaphthalene (DiPr-5,6-ADTN), produced a rapid, short lasting elevation of DA concentrations. The esterified primary amines, dibenzoyl-5,6-and dibenzoyl-6,7-dihydroxyaminotetralin, had a delayed effect, causing a maximal HVA decrease after 4–6 h.

DiPr-5,6-ADTN was found to be the most potent compound, with a maximal effect at a dose of 0.33 μmol/kg, it being 30 times more potent than apomorphine and DiPr-6,7-ADTN. The results corroborate reported behavioural data, and the relative potencies of the alkylated derivatives in this test system for dopaminergic activity are in agreement with those based on stereotyped behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N. E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)

    Google Scholar 

  • Baldessarini, R. J., Kula, N. S., Walton, K. G., Borgman, R. J.: Behavioural effects of apomorphine and diisobutyrylapomorphine in the mouse. Psychopharmacology 53, 45–53 (1977)

    Google Scholar 

  • Blaschko, H.: Amine oxydase and amine metabolism. Pharmacol. Rev. 4, 415–458 (1952)

    Google Scholar 

  • Borgman, R. J., Smith, R. V., Keiser, J. E.: The acetylation of apomorphine. An improved method for the selective preparation of diacetylapomorphine utilizing trifluoroacetic acid/acetyl bromide. Synthesis 4, 249–250 (1975)

    Google Scholar 

  • Burt, D. R., Creese, I., Snyder, S. H.: Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–812 (1976)

    Google Scholar 

  • Cannon, J. G.: Chemistry of dopaminergic agonists. In: Advances in neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), pp. 177–183. New York: Raven Press 1975

    Google Scholar 

  • Cannon, J. G., Kim, J. C., Aleem, M. A., Long, J. P.: Centrally acting emetics. 6. Derivatives of β-naphthylamine and 2-indanamine. J. Med. Chem. 15, 348–350 (1972)

    Google Scholar 

  • Cannon, J. G., Lee, T., Goldman, H. D., Costall, B., Naylor, R. J.: Cerebral dopamine agonist properties of some 2-aminotetralin derivatives after peripheral and intracerebral administration. J. Med. Chem. 20, 1111–1116 (1977)

    Google Scholar 

  • Cannon, J. G., Costall, B., Laduron, P. M., Leysen, J. E., Naylor, R. J.: Effects of some derivatives of 2-aminotetralin on dopaminesensitive adenylate cyclase and on the binding of [3H]haloperidol to neuroleptic receptors in the rat striatum. Biochem. Pharmacol. 27, 1417–1420 (1978a)

    Google Scholar 

  • Cannon, J. G., Hsu, F. L., Long, J. P., Flynn, J. R., Costall, B., Naylor, R. J.: Preparation and biological actions of some symmetrically N,N-disubstituted dopamines. J. Med. Chem. 21, 248–253 (1978b)

    Google Scholar 

  • Carlsson, A., Kehr, W., Lindquist, M.: Agonist-antagonist interaction on dopamine-receptors in brain, as reflected in the rates of tyrosine and tryptophan hydroxylation. J. Neural Transm. 40, 99–113 (1977)

    Google Scholar 

  • Cheng, H. C., Long, J. P., van Orden III, L. S., Cannon, J. G., O'Donnell, J. P.: Dopaminergic activity of some apomorphine analogues. Res. Commun. Chem. Pathol. Pharmacol. 15, 89–106 (1976)

    Google Scholar 

  • Colpaert, F. C., van Bever, W. F. M., Leysen, J. E. M. F.: Apomorphine: Chemistry, pharmacology, biochemistry. Int. Rev. Neurobiol. 19, 225–268 (1976)

    Google Scholar 

  • Consolo, S., Fanelli, R., Garattini, S., Ghezzi, D., Jori, A., Ladinsky, H., Marc, V., Samanin, R.: Dopaminergic-cholinergic interaction in the striatum: Studies with piribedil. In: Advances in neurology, Vol. 9 (D. B. Calne, T. N. Chase, A. Barbeau, eds.), pp. 257–272. New York: Raven Press 1975

    Google Scholar 

  • Corrodi, H., Farnebo, L. O., Fuxe, K., Hamberger, B., Ungerstedt, U.: ET-495 and brain catecholamine mechanisms: Evidence for stimulation of dopamine receptors. Eur. J. Pharmacol. 20, 195–204 (1972)

    Google Scholar 

  • Dandiya, P. C., Sharma, H. L., Patni, S. K., Gambhir, R. S.: An evaluation of apomorphine action on dopaminergic receptors. Experientia 31, 1441–1443 (1975)

    Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Vagiu, L., Stefanini, E., Gessa, G. L.: Evidence for selective and long-lasting stimulation of “regulatory” dopamine receptors by bromocriptine (CB 154). Naunyn Schmiedeberg's Arch. Pharmacol. 300, 239–245 (1977)

    Google Scholar 

  • Di Giulio, A. M. Groppetti, A., Cattabeni, F., Galli, C. L., Maggi, A., Algeri, S., Ponzio, F.: Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons. Eur. J. Pharmacol. 52, 201–207 (1978)

    Google Scholar 

  • Elkhawad, A. O., Woodruff, G. N.: Studies on the behavioural pharmacology of a cyclic analogue of dopamine following its injection into the brains of conscious rats. Br. J. Pharmacol. 54, 107–114 (1975)

    Google Scholar 

  • Fuxe, K., Corrodi, H., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Ergocornine and 2-Br-α-ergocryptine. Evidence for prolonged dopamine receptor stimulation. Med. Biol. 52, 121–132 (1974)

    Google Scholar 

  • Handforth, A., Sourkes, T. L.: Inhibition by dopamine agonists of dopamine accumulation following γ-hydroxybutyrate treatment. Eur. J. Pharmacol. 34, 311–319 (1975)

    Google Scholar 

  • Horn, A. S., de Kaste, D., Dijkstra, D., Rollema, H., Feenstra, M., Westerink, B. H. C., Grol, C., Westerbrink, A.: A new dopaminergic prodrug. Nature 276, 405–407 (1978a)

    Google Scholar 

  • Horn, A. S., Grol, C. J., Dijkstra, D., Mulder, A. H.: Facile syntheses of potent dopaminergic agonists and their effects on neurotransmitter release. J. Med. Chem. 21, 825–828 (1978b)

    Google Scholar 

  • Iversen, L. L.: Dopamine receptors in the brain. Science 188, 1084–1089 (1975)

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindquist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24, 744–747 (1972)

    Google Scholar 

  • Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P., Schwartz, J. C.: Long-term changes in the sensitivity of pre- and postsynaptic dopamine receptors in mouse striatum evidenced by behavioural and biochemical studies. Brain Res. 136, 319–337 (1977)

    Google Scholar 

  • McDermed, J. D., McKenzie, G. M., Phillips, A. P.: Synthesis and pharmacology of some 2-aminotetralins. Dopamine receptor agonists. J. Med. Chem. 18, 362–367 (1975)

    Google Scholar 

  • O'Keeffe, R., Sharman, D. F., Vogt, M.: Effect of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)

    Google Scholar 

  • Pagnini, G., Camanni, F., Crispino, A., Portaleone, P.: Effects of bromocriptine on adenylate cyclase and phosphodiesterase activities of rat striatum. J. Pharm. Pharmacol. 30, 92–95 (1978)

    Google Scholar 

  • Parkes, D.: Bromocriptine. In: Advances in drug research, Vol. 12 (N. J. Harper, A. B. Simmonds, eds.), pp. 247–344. London: Academic Press 1977

    Google Scholar 

  • Quik, M., Iversen, L. L., Larder, A., Mackay, A. V. P.: Use of ADTN to define specific 3H-spiperone binding to receptors in brain. Nature 274, 513–514 (1978)

    Google Scholar 

  • Rollema, H., Westerink, B. H. C., Grol, C. J.: Correlation between neuroleptic induced suppression of stereotyped behaviour and HVA concentrations in rat brain. J. Pharm. Pharmacol. 28, 321–323 (1976)

    Google Scholar 

  • Roos, B. E.: Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol. 21, 263–264 (1969)

    Google Scholar 

  • Roth, R. H., Murrin, L. C., Walters, J. R.: Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur. J. Pharmacol. 36, 163–171 (1976)

    Google Scholar 

  • Scatton, B., Worms, P.: Subsensitivity of striatal and mesolimbic dopamine target cells after repeated treatment with apomorphine dipivaloyl ester. Naunyn Schmiedeberg's Arch. Pharmacol. 303, 271–278 (1978)

    Google Scholar 

  • Seeman, P., Titeler, M., Tedesco, J., Weinreich, P., Sinclair, D.: Brain receptors for dopamine and neuroleptics. In: Advances in biochemical psychopharmacology, Vol. 19 (P. J. Roberts, G. N. Woodruff, L. L. Iversen, eds.), pp. 167–176. New York: Raven Press 1978

    Google Scholar 

  • Uretsky, N. J.: Effect of α-methyldopa on the metabolism of dopamine in the striatum of the rat. J. Pharmacol. Exp. Ther. 189, 359–369 (1974)

    Google Scholar 

  • Westerink, B. H. C.: Further studies on the sequence of dopamine metabolism in the rat brain. Eur. J. Pharmacol. 56, 313–323 (1979)

    Google Scholar 

  • Westerink, B. H. C., Korf, J.: Rapid concurrent automated fluorimetric assay of noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 3-methoxytyramine in milligram amounts of nervous tissue after isolation on Sephadex G-10. J. Neurochem. 29, 697–706 (1977)

    Google Scholar 

  • Wikström, H., Lindberg, P., Martinson, P., Hjorth, S., Carlsson, A., Hacksell, U., Scensson, U., Nillson, J. LL. G.: Pivaloyl esters of N,N-dialkylated dopamine congeners. Central dopamine-receptor stimulating activity. J. Med. Chem. 21, 864–867 (1979)

    Google Scholar 

  • Woodruff, G. N., Elkhawad, A. O., Pinder, R. M.: Long lasting stimulation of locomotor activity produced by the intraventricular injection of a cyclic analogue of dopamine into conscious mice. Eur. J. Pharmacol. 25, 80–86 (1974)

    Google Scholar 

  • Woodruff, G. N., Watling, K. J., Andrews, C. D., Poat, J. A., McDermed, J.: Dopamine receptors in rat striatum and nucleus accumbens; conformational studies using rigid analogues of dopamine. J. Pharm. Pharmacol. 29, 422–427 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feenstra, M.G.P., Rollema, H., Horn, A.S. et al. Effect of dihydroxy-2-aminotetralin derivatives on dopamine metabolism in the rat striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 310, 219–225 (1980). https://doi.org/10.1007/BF00499913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499913

Key words

Navigation