Skip to main content
Log in

A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices

  • Original article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The substance 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride (NS-7) has been developed recently as a cerebroprotective compound with Na+ and Ca2+ channel blocking action. In the present study, the effect of NS-7 in an in vitro model of hypoxic injury was examined and the possible involvement of Na+ and Ca2+ channels in the hypoxic injury subsequently determined. When slices of rat cerebral cortex were exposed to hypoxia/glucose deprivation followed by reoxygenation and restoration of the glucose supply, marked leakage of lactate dehydrogenase (LDH) occurred 3–6 h after reoxygenation. This hypoxia/reoxygenation-induced injury was blocked almost completely by the removal of extracellular Ca2+ or by chelating intracellular Ca2+ with 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM). In addition, combined treatment with the N-type Ca2+ channel blocker ω-conotoxin GVIA and the P/Q-type Ca2+ channel blocker ω-agatoxin IVA significantly reduced LDH leakage, although neither of these Ca2+ channel blockers alone, nor nimodipine, an L-type Ca2+ channel blocker, was effective. On the other hand, several Na+ channel blockers, including tetrodotoxin, local anaesthetics and antiepileptics, significantly reduced the hypoxic injury. NS-7 (3–30 µM) concentration-dependently inhibited LDH leakage caused by hypoxia/reoxygenation, but had no influence on the reduction of tissue ATP content and energy charge during hypoxia and glucose deprivation. It is suggested that blockade of Na+ and Ca2+ channels is implicated in the cerebroprotective action of NS-7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 10 March 1998 / Accepted: 19 April 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsumi, S., Itoh, Y., Ukai, Y. et al. A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices. Naunyn-Schmiedeberg's Arch Pharmacol 358, 191–196 (1998). https://doi.org/10.1007/PL00005242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00005242

Navigation