Skip to main content
Log in

Ritz-Galerkin approximations in blending function spaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper considers the theoretical development of finite dimensional bivariate blending function spaces and the problem of implementing the Ritz-Galerkin method in these approximation spaces. More specifically, the approximation theoretic methods of polynomial blending function interpolation and approximation developed in [2, 11–13] are extended to the general setting of L-splines, and these methods are then contrasted with familiar tensor product techniques in application of the Ritz-Galerkin method for approximately solving elliptic boundary value problems. The key to the application of blending function spaces in the Ritz-Galerkin method is the development of criteria which enable one to judiciously select from a nondenumerably infinite dimensional linear space of functions, certain finite dimensional subspaces which do not degrade the asymptotically high order approximation precision of the entire space. With these criteria for the selection of subspaces, we are able to derive a virtually unlimited number of new Ritz spaces which offer viable alternatives to the conventional tensor product piecewise polynomial spaces often employed. In fact, we shall see that tensor product spaces themselves are subspaces of blending function spaces; but these subspaces do not preserve the high order precision of the infinite dimensional parent space.

Considerable attention is devoted to the analysis of several specific finite dimensional blending function spaces, solution of the discretized problems, choice of bases, ordering of unknowns, and concrete numerical examples. In addition, we extend these notations to boundary value problems defined on planar regions with curved boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlberg, J. H., Nilson, E. N., Walsh, J. L.: The Theory of Splines and Their Applications. New York: Academic Press 1967

    Google Scholar 

  2. Birkhoff, G., Gordon, W. J.: The draftsman's and related equations. J. of Approximation Theory, (1967)

  3. Birkhoff, G., Schultz, M., Varga, R. S.: Smooth Hermite interpolation for rectangles with applications to elliptic differential equations. Numer. Math.11, 232–256 (1968)

    Google Scholar 

  4. Caprili, M., Cella, A., Gheri, G.: Spline interpolation techniques for variational methods. Int. J. Solids Struct.6, 565–576 (1973)

    Google Scholar 

  5. Carlson, R., Hall, C. A.: Error bounds for bicubic spline interpolation. J. of Approximation Theory7, 41–47 (1973)

    Google Scholar 

  6. Cavendish, J. C., Gordon, W. J., Hall, C. A.: Ritz-Galerkin approximations in blending functions spaces. I. Approximation theoretic analysis. General Motors Research Report GMR-1572 (1974)

  7. Cella, A.: Approximation Techniques in the Finite Element Method. To be published by Centre Internationelle des Sciences Mecaniques, Wien: Springer

  8. Ciarlet, P., Schultz, M., Varga, R. S.: Numerical methods of high order accuracy for nonlinear boundary value problems. I. Numer. Math.9, 394–430 (1967)

    Google Scholar 

  9. Ergatoudis, J., Irons, B. M., Zienkiewicz, O. C.: Curved isoparametric quadrilateral elements for finite element analysis. Int. J. Solids Struct.4, 31–42 (1968)

    Google Scholar 

  10. Golub, G. H., Varga, R. S.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods, Part I. Numer. Math.3, 147–156 (1961)

    Google Scholar 

  11. Gordon, W. J.: Blending-function methods for bivariate and multivariate interpolation and approximation. SIAM J. Numerical Analysis8, 158–177 (1971)

    Google Scholar 

  12. Gordon, W. J.: Distributive lattices and the approximation of multivariate functions. Approximation with Special Emphasis on Spline Functions, New York: Academic Press 1969 p. 223–277

    Google Scholar 

  13. Gordon, W. J.: Spline-blended surface interpolation through curve networks. J. Math. Mech.10, 931–952 (1968)

    Google Scholar 

  14. Gordon, W. J., Hall, C. A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math.21, 109–129 (1973)

    Google Scholar 

  15. Gordon, W. J., Hall, C. A.: Geometric aspects of the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (ed. A. K. Aziz) New York: Academic Press 1972

    Google Scholar 

  16. Gordon, W. J., Hall, C. A.: Construction of curvilinear coordinate systems and applications to mesh generation. Int. J. Num. Meth. Eng.7 461–477 (1973)

    Google Scholar 

  17. Hageman, L. A.: The estimation of acceleration parameters for the Chebyshev polynomial and the successive overrelaxation iteration methods. Bettis Atomic Power Laboratory, WAPD-TM-1038, June 1972

  18. Hall, C. A., Luczak, R., Serdy, A.: Numerical solution of boundary value problems over curved domains. To appear: TOMS

  19. Jacobson, N.: Lectures in Abstract Algebra II. Linear Algebra, Princetown, New Jersey: D. Van Nostrand., 1953

    Google Scholar 

  20. Karlin, S., Ziegler, Z.: Tchebycheffian spline functions. SIAM J. Numer. Analysis3, 514–543 (1966)

    Google Scholar 

  21. Kincaid, D. R.: A class of norms of iterative methods for solving systems of linear equations. Numer. Math.20, 392–408 (1973)

    Google Scholar 

  22. Marshall, J. A., Mitchell, A. R.: An exact boundary technique for inproved accuracy in the finite element method. J. Inst. Maths. Applics.12, 355–362 (1973)

    Google Scholar 

  23. Schultz, M., Varga, R. S.: L-splines. Numer. Math.10, 345–369 (1967)

    Google Scholar 

  24. Schultz, M.: L-multivariate approximation theory. SIAM J. Numer. Analysis6, 161–183 (1969)

    Google Scholar 

  25. Schultz, M.: L2-multivariate approximation theory. SIAM J. Numer. Analysis6, 184–209 (1969)

    Google Scholar 

  26. Schultz, M.: Spline Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, 1973

    Google Scholar 

  27. Swartz, B. K., Varga, R. S.: Error bounds for spline and L-spline interpolation. J. Approx. Theory6, 6–149 (1972)

    Google Scholar 

  28. Timoshenko, S., Goodier, J.: Theory of Elasticity. New York: McGraw-Hill 1951

    Google Scholar 

  29. Varga, R. S.: Functional Analysis and Approximation Theory in Numerical Analysis. SIAM, 1972

  30. Young, D. M.: Iterative methods for solving partial difference equations of elliptic type. Trans. Amer. Math. Soc.76, 92–111 (1954)

    Google Scholar 

  31. Zienkiewicz, O. C.: The Finite Element Method in Engineering Science. London: McGraw-Hill 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavendish, J.C., Gordon, W.J. & Hall, C.A. Ritz-Galerkin approximations in blending function spaces. Numer. Math. 26, 155–178 (1976). https://doi.org/10.1007/BF01395970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395970

Keywords

Navigation