Skip to main content
Log in

On the efficient solution of nonlinear finite element equations. II

Bound-constrained problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider nonlinear variational inequalities corresponding to a locally convex minimization problem with linear constraints of obstacle type. An efficient method for the solution of the discretized problem is obtained by combining a slightly modified projected SOR-Newton method with the projected version of thec g-accelerated relaxation method presented in a preceding paper. The first algorithm is used to approximately reach in relatively few steps the proper subspace of active constraints. In the second phase a Kuhn-Tucker point is found to prescribed accuracy. Global convergence is proved and some numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axelsson, O.: Solution of linear systems of equations: iterative methods. In: Sparse matrix techniques, (V. A. Barker, ed.) pp. 1–51. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  2. Baiocchi, C., Comincioli, V., Magenes, E., Pozzi, G.A.: Free boundary problems in the theory of fluid flow through porous media. Existence and uniqueness theorems. Ann. Mat. Pura Appl.4, 1–82 (1973)

    Google Scholar 

  3. Byrne, G.D., Hall, C.A. (eds.): Numerical solution of systems of nonlinear algebraic equations. New York and London: Academic Press 1973

    Google Scholar 

  4. Concus, P., Golub, G.H., O'Leary, D.P.: Numerical solution of nonlinear elliptic partial differential equations by a generalized conjugate gradient method. Computing19, 321–339 (1978)

    Google Scholar 

  5. Fischer, F.D.: Zur Lösung des Kontaktproblems elastischer Körper mit ausgedehnter Kontaktfläche durch quadratische Programmierung. Computing13, 353–384 (1974)

    Google Scholar 

  6. Frehse, J.: On Signorini's problem and variational problems with thin obstacles. Ann Scuola Norm. Sup. Pisa Cl. Sci. IV Ser.4, 343–362 (1977)

    Google Scholar 

  7. Glowinski, R., Lions, J.L., Tremolieres, R.: Approximations des inéquations variationelles. Paris: Dunod 1976

    Google Scholar 

  8. Kovacevic, V.: Some extensions of linearly constrained nonlinear programming. In: Optimization and Operations Research, (W. Oettli, K. Ritter, eds.), pp. 171–182. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  9. Meyer, G.H.: The numerical solution of quasilinear elliptic equations. In: (G.D. Byrne, C. A. Hall, eds.) Numerical solution of systems of nonlinear algebraic equations, pp. 27–62. New York and London: Academic Press 1973

    Google Scholar 

  10. Mittelmann, H.D.: On the approximate solution of nonlinear variational inequalities. Numer. Math.29, 451–462 (1978)

    Google Scholar 

  11. Mittelmann, H.D.: On the efficient solution of nonlinear finite element equations I. Numer. Math.35, 277–291 (1980)

    Article  Google Scholar 

  12. van Moerbeke, P.: On optimal stopping and free boundary problems. Arch. Rational Mech. Anal.60, 101–148 (1976)

    Article  Google Scholar 

  13. Moreau, J.J.: One-sided constraints in hydrodynamics. In: (J. Abadie, ed.): Nonlinear programming, pp. 259–279. Amsterdam: North-Holland 1967

    Google Scholar 

  14. O'Leary, D.P.: Conjugate gradient algorithms in the solution of optimization problems for nonlinear elliptic partial differential equations. Computing22, 59–77 (1979)

    Google Scholar 

  15. Rheinboldt, W.C.: On the solution of some nonlinear equations arising in the applications of finite element methods. In: (J.R. Whiteman, ed.): The mathematics of finite elements and applications II, pp. 465–482. London-New York-San Francisco: Academic Press 1976

    Google Scholar 

  16. Schechter, S.: On the choice of relaxation parameters for nonlinear problems. In: (G.D. Byrne, C.A. Hall, eds.) Numerical solution of systems of nonlinear algebraic equations, pp. 349–372. New York and London: Academic Press, 1973

    Google Scholar 

  17. Sheldon, J.: On the numerical solution of elliptic difference equations. Math. Tables Aids Comput.9, 101–112 (1955)

    Google Scholar 

  18. Spellucci, P.: A descent method for finding second order Kuhn-Tucker points of linearly constrained nonconvex optimization problems. In: Operations Research-Verfahren XXXI, pp. 597–612. Meisenheim am Glahn: Anton Hain, 1979

    Google Scholar 

  19. Toint, Ph.: On the superlinear convergence of an algorithm for solving a sparse minimization problem. SIAM J. Numer. Anal.16, 1036–1045 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittelmann, H.D. On the efficient solution of nonlinear finite element equations. II. Numer. Math. 36, 375–387 (1981). https://doi.org/10.1007/BF01395953

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395953

Subject Classifications

Navigation