Skip to main content
Log in

A shape-optimization technique for the capillary surface problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The problem of the construction of an equilibrium surface taking the surface tension into account leads to “Laplace-Young” equation which is a nonlinear elliptic free-boundary problem. In contrast to Orr et al. where an iterative technique is used for direct solution of the equation for problems with simple geometry, we propose here an alternative approach based on shape optimization techniques. The shape of the domain of the liquid is varied to attain the optimality condition. Using optimal control theory to derive expressions for the gradient, a numerical scheme is proposed and simple model problems are solved to validate the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Variational and quasi-variational inequalities. New York: Wiley 1984

    Google Scholar 

  2. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl.52, 189–289 (1975)

    Google Scholar 

  3. Ciarlet, P.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978

    Google Scholar 

  4. Concus, P.: Static menisci in a vertical right circular cylinder. J. Fluid Mech.34, 481 (1968)

    Google Scholar 

  5. Concus, P., Karasalo, I.: A numerical study of capillary stability in a circular cylindrical container with concave spherical bottom. Comput. Methods Appl. Mech. Eng.16, 327 (1978)

    Google Scholar 

  6. Concus, P., Finn, R.: On the determination of the capillary surface in a wedge. Proc. Nat. Acad. Sci.63, 292 (1969)

    Google Scholar 

  7. Hasslinger, J., Neittanmaki, P.: Finite element approximations for optimal shape design: theory and applications. New York: Wiley 1988

    Google Scholar 

  8. Myskis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A., Tyuptsov, A.D.: Lowgravity fluid mechanics. Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  9. Orr, F.M., Brown, R.A., Scriven, L.E.: Three dimensional menisci. Numerical solution by finite elements. J. Coll. Int. Sci.60, 1 (1977)

    Google Scholar 

  10. Orr, F.M., Scriven, L.E.: Menisci in arrays of cylinders: numerical simulation by finite elements. J. Coll. Int. Sci.52, 3 (1975)

    Google Scholar 

  11. Padday, J.F., Pitt, A.: Axi-symmetric meniscus profiles. J. Coll. Int. Sci.38, 323 (1972)

    Google Scholar 

  12. Padday, J.F., Pitt, A.: The stability of the axi-symmetric meniscus. Philos. Trans. R. Soc. London, Ser. A275, 489 (1973)

    Google Scholar 

  13. Petrov, V.M., Chernousko, F.L.: On the determination of the equilibrium shapes of the liquid under gravitation and the surface-shapes of the liquid under gravitation and the surface-tension forces. Izv. Akad. Nauk. USSR Mekh. Zhid. Gaza5, 1152 (1966)

    Google Scholar 

  14. Pironneau, O.: Optimal shape design for elliptic systems. Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  15. Siekmann, J., Scheider, W., Tietze, P.: Static menisci configurations in propellant tanks under reduced gravity. Comput. Meth. Appl. Mech. Eng.28, 103 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Das, P.C. & Kishore, N.N. A shape-optimization technique for the capillary surface problem. Numer. Math. 58, 737–757 (1990). https://doi.org/10.1007/BF01385652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385652

Subject classifications

Navigation