Skip to main content
Log in

Metabolism of large bowel mucosa in health and disease

  • Review
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Conclusions

Attitudes to colonic mucosal diseases have changed since the knowledge that the microflora act by its metabolites on the metabolic activity of the colonocytes, thereby influencing their functions and growth. The primary actions of the flora are twofold. They produce first metabolites which act as energy-producing substrates for the colonocytes, and second substances which may interfere with the enzymatic activities of the mucosa. Study of the action of microfloral metabolites on colonocyte metabolism and of the consequences following surgery offer an opportunity to obtain further information on the pathogenesis and therapy of large bowel diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borriello SP (1990) Gastrointestinal Microflora. In: Caprilli R, Torsoli A (eds) Coloproctology. Basic knowledge for clinical practice. International University Press, Roma, pp 95–106

    Google Scholar 

  2. Roediger WEW, Phil (Oxon) D (1988) What sequence of pathogenetic events leads to acute ulcerative colitis? Dis Colon Rectum 31:482–487

    Google Scholar 

  3. Roediger WEW (1982) The effect of bacterial metabolites on nutrition and function of the colonic mucosa. Symbiosis between man and bacteria. In: Kaspar H, Goebbel H (eds) Colon Nutrition, MTP Press, Lancaster, pp 11–25

    Google Scholar 

  4. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    Google Scholar 

  5. Roediger WEW (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798

    Google Scholar 

  6. Ardawi MSM, Newsholme EA (1985) Fuel utilization in colonocytes of the rat. Biochem J 231:713–719

    Google Scholar 

  7. Vernay MY, Marty JF (1984) Absorption and metabolism of butyric acid in rabbit hindgut. Comp Biochem Physiol 77A:89–96

    Google Scholar 

  8. Marty JF, Vernay MY, Abravanel GM (1985) Acetate absorption and metabolism in the rabbit hindgut. Gut 26:562–569

    Google Scholar 

  9. Vernay MY (1987) Propionate absorption and metabolism in the rabbit hindgut. Gut 28:1077–1083

    Google Scholar 

  10. Roediger WEW (1986) Metabolic basic of starvation diarrhoea: implications for treatment. Lancet i:1082–1083

    Google Scholar 

  11. Cummings JH (1984) Colonic absorption: the importance of short chain fatty acids in man. Scand J Gastroenterol 93:89–99

    Google Scholar 

  12. Caprilli R, Onori L, Frieri G, Latella G, De Petris G (1990) Colonic water and electrolyte transport. In: Caprilli R, Torsoli A (eds) Coloproctology. Basic knowledge for clinical practice. International University Press, Roma, pp 49–72

    Google Scholar 

  13. Smith GW, Wiggins PM, Lee SP, Tasman-Jones C (1986) Diffusion of butyrate through pig colonic mucus in vitro. Clinical Science 70:271–276

    Google Scholar 

  14. Henning SJ, Hird FJR (1972) Ketogenesis from butyrate and acetate by the caecum and the colon of rabbits. Biochem J 130:785–790

    Google Scholar 

  15. Roediger WEW, Radcliffe BC, Deakin EJ, Nance SH (1986) Specific metabolic effect of sodium nitrite on fat metabolism by mucosal cells of the colon. Dig Dis Sci 31:535–539

    Google Scholar 

  16. Roediger WEW, Lawson MJ, Nance SH, Radcliffe BC (1986) Detectable colonic nitrite levels in inflammatory bowel disease — Mucosal or bacterial malfunction? Digestion 35:199–204

    Google Scholar 

  17. Roediger WEW, Radcliffe BC (1988) Role of nitrite and nitrate as a redox couple in the rat colon. Gastroenterology 94:915–922

    Google Scholar 

  18. Roediger WEW, Deakin EJ, Radcliffe BC, Nance S (1986) Anion control of sodium absorption in the colon. Quart J Exp Physiol 71:195–204

    Google Scholar 

  19. Radcliffe BC, Nance SH, Deakin EJ, Roediger WEW (1987) Effect of luminal or circulating nitrite on colonic ion movement in the rat. Am J Physiol 253:G246-G252

    Google Scholar 

  20. Hagemann RF, Stragand JJ (1977) Fasting and refeeding: cell kinetic response of the jejunum, ileum and colon. Cell Tissue Kinet 10:3–14

    Google Scholar 

  21. Stragand JJ, Hagemann RF (1977) Effect of luminal contents on colonic cell replacement. Am J Physiol 233:E208-E211

    Google Scholar 

  22. Stragand JJ, Hagemann RF (1977) Dietary influence on colonic cell renewal. Am J Clin Nutr 30:918–923

    Google Scholar 

  23. Kvietys PR, Granger DN (1981) Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80:962–969

    Google Scholar 

  24. Sakata T, Engelhardt WV (1983) Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comparative Biochemistry and Physiology A74:459–462

    Google Scholar 

  25. Sakata T, Yajima T (1984) Influence of short chain fatty acids on the epithelial cell division of digestive tract. Quart J Exp Physiol 69:639–648

    Google Scholar 

  26. Prasad KN (1980) Butyric acid: A small fatty acid with diverse biological functions. Life Sciences 27:1351–1358

    Google Scholar 

  27. Kruh J (1982) Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Molecular and Cellular Biochemistry 42:65–82

    Google Scholar 

  28. Boffa LC, Vidali G, Mann RS, Allfrey VG (1978) Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry 253:3364–3366

    Google Scholar 

  29. Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–114

    Google Scholar 

  30. D'Anna JA, Tobey RA, Gurley LR (1980) Concentration dependent effect of sodium butyrate in chinese hamster cells: cell-cycle progression, inner-histone acetylation, histone H1 dephosphorylation and induction of an H1-like protein. Biochemistry 19:2656–2671

    Google Scholar 

  31. Tsao D, Morita A, Bella A, Luu P, Kim YS (1982) Differential effects of sodium butyrate, dimethyl sulfoxide and retinoic acid on membrane-associated antigen, enzymes and glycoproteins of human rectal adenocarcinoma cells. Cancer Res 42:1052–1058

    Google Scholar 

  32. Tsao D, Shi Z, Wong A, Kim YS (1983) Effect of sodium butyrate on carcinoembryonic antigen production by human colonic adenocarcinoma cells in culture. Cancer Research 43:1217–1222

    Google Scholar 

  33. Chung YS, Song IS, Erickson RH, Sleisenger MH, Kim YS (1985) Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res 45:2976–2982

    Google Scholar 

  34. Whitehead RH, Young GP, Bhathal PS (1986) Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27:1457–1463

    Google Scholar 

  35. Nordenberg J, Wasserman L, Peled A, Malik Z, Stenzel KH, Novogrodsky A (1987) Biochemical and ultrastructural alterations accompany the anti-proliferative effect of butyrate on melanoma cells. Br J Cancer 55:493–497

    Google Scholar 

  36. Vernia P, Latella G, Magliocca FM, Caprilli R (1987) Fecal organic anions in diarrhoeal diseases. Scand J Gastroenterol 22 [Suppl 129]:105–109

    Google Scholar 

  37. Roediger WEW (1988) Bacterial short-chain fatty acids and mucosal diseases of the colon. Br J Surg 75:346–348

    Google Scholar 

  38. Firmansyah A, Penn D, Lebenthal E (1989) Isolated colonocyte metabolism of glucose, glutamine, n-butyrate, and β-hydroxy-butyrate in malnutrition. Gastroenterology 97:622–629

    Google Scholar 

  39. Yoshida T, Pleasants JY, Reddy BS (1968) Efficiency of digestion in germfree and conventional rabbits. Br J Nutr 22:723–737

    Google Scholar 

  40. Gordon HA, Wostmann BS (1973) Chronic mild diarrhoea in germfree rodents: a model portraying host-florasynergism. In: Henegham JB (ed) Germfree research. Academic Press, New York, pp 593–604

    Google Scholar 

  41. Ellestad-Sayed JJ, Nelson RA, Adson MA, Palmer WM, Soule EH (1976) Pantothenic acid, coenzyme A, and human chronic ulcerative and granulomatous colitis. Am J Clin Nutr 29:1333–1338

    Google Scholar 

  42. Roediger WEW (1980) The colonic epithelium in ulcerative colitis: an energy deficiency disease. Lancet ii:712–715

    Google Scholar 

  43. Roediger WEW, Lawson MJ, Kwok V, Grant AK, Pannall PR (1984) Colonic bicarbonate output as a test of disease activity in ulcerative colitis. J Clin Pathol 37:704–707

    Google Scholar 

  44. Gibson PR, De Pol EV, Barrat PJ, Doe WF (1988) Ulcerative colitis—a disease characterised by the abnormal colonic epithelial cell? Gut 29:516–521

    Google Scholar 

  45. Nelson RA (1968) Intestinal transport, coenzyme A, and colitis in pantothenic acid deficiency. Am J Clin Nutr 21:495–501

    Google Scholar 

  46. Roediger WEW, Nance S (1986) Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br J Path 67:773–782

    Google Scholar 

  47. Caprilli R, Frieri G, Latella G, Vernia P, Santoro ML (1986) Faecal excretion of bicarbonate in ulcerative colitis. Digestion 35:136–142

    Google Scholar 

  48. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M (1988) Fecal lactate and ulcerative colitis. Gastroenterology 95:1564–1568

    Google Scholar 

  49. Caprilli R, Sebastiani R, Palumbo G, Discepoli S, Calvisi G, Magliocca FM, Vernia P (1989) Lactic colitis. Coloproctology 2:82–84

    Google Scholar 

  50. Kameyama J, Narvi H, Inui M, Sato T (1984) Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J Exp Med 143 (2):253–254

    Google Scholar 

  51. Breuer RI, Buto SK, Christ ML, Bean JA, Vernia P, Di Paulo MC, Caprilli R (1990) Short chain fatty acids for distal ulcerative colitis. Gastroenterology 98:A1325

  52. Glotzer DJ, Glick ME, Goldaman H (1981) Proctitis and colitis following diversion of the fecal stream. Gastroenterology 80:438–441

    Google Scholar 

  53. Lusk LB, Reichen J, Levine JS (1984) Aphtous ulceration in diversion colitis. Clinical implications. Gastroenterology 80:1171–1173

    Google Scholar 

  54. Marcheggiano A, Iannoni C, Latella G, Frieri G, Diosi D, De Dominicis C, Laurenti C, Caprilli R, Torsoli A (1991) Abnormalities of colonic mucin secretion and metabolic alterations after internal urinary diversions for bladder extrophy. A prospective study. Br J Urol (in press)

  55. Harig JM, Soergel KH, Komorowski RA, Wood CM (1989) Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 320:23–28

    Google Scholar 

  56. Mauclaire P (1895) De quelques essais de chirurgie expérimentale applicable au traitment de l'extrophie de la vessie et des anus contre nature complexes. Ann Malad Org Gén Urin 13:1080

    Google Scholar 

  57. Heitz-Boyer M, Hovelacque A (1912) Création d'une nuovelle vessie et d'un nuovel uretre. H d'Urol Med Chir 1:237

    Google Scholar 

  58. Iannoni C, Marcheggiano A, Pallone F, Frieri G, Gallucci M, Di Silverio F, Caprilli R (1986) Abnormal patterns of colorectal mucin secretion after urinary diversion of different types: Histochemical and lectin binding studies. Human Pathology 17:834–840

    Google Scholar 

  59. Shinya H, Wolff I (1979) Morphology, anatomic distribution and cancer potential of colonic polyps. Ann Surg 190:679–683

    Google Scholar 

  60. Jacobs LR (1986) Relationship between dietary fibre and cancer: metabolic, physiologic and cellular mechanisms. Proc Soc Exp Biol Med 183:299–310

    Google Scholar 

  61. Hill MJ (1989) Aetiology of colorectal cancer: current concepts. Bailliére's Clinical Gastroenterology 3:567–592

    Google Scholar 

  62. Weaver GA, Krause JA, Miller TL, Wolin MJ (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29:1539–1543

    Google Scholar 

  63. Vernia P, Ciarniello P, Cittadini M, Lorenzotti A, Alessandrini A, Caprilli R (1989) Stool pH and SCFA in colorectal cancer and polyps. Gastroenterology 96:A528

  64. Clausen MR, Bonnen H, Mortensen PB (1990) Colonic fermentation of dietary fiber to butyrate is decreased in patients with adenomatous polyps and colonic cancer. Abstracts I of The World Congress of Gastroenterology. Sydney, Australia, pp 1252

  65. Sakai Y, Hatakeyama K, Ota K, Muto T, Ono T (1990) Does the colon contribute to long chain fatty acid absorption? With special reference to colonic fatty acid binding protein (FABP). Abstract I of The World Congress of Gastroenterology. Sydney, Australia, pp 1226

  66. Doll R, Peto R (1981) Quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

    Google Scholar 

  67. Yajima T (1985) Contractile effect of short chain fatty acids on the isolated colon of the rat. J Physiol 368:667–678

    Google Scholar 

  68. Percy WH, Roberts RL, Mason JB, Christensen J (1986) Substrate dependence and oxygen sensitivity of tone and spontaneous and evoked contractions of the distal colonic muscularis mucosae of opossum. Gastroenterology 91:570–575

    Google Scholar 

  69. Roediger WEW, Rigol G (1984) Sodium absorption with bacterial fatty acids and bile salts in the proximal and distal colon as a guide to colonic resection. Dis Col Rec 27:1–5

    Google Scholar 

  70. Fielding LP, Stewart-Brown S, Blesovsky L, Kearney G (1980) Anastomotic integrity after operation for larger-bowel cancer: A multicentre study. Br Med J 281:411–414

    Google Scholar 

  71. Rolandelli RH, Koruda J, Settle RG, Rombeau JL (1986) Effects of intraluminal infusion of short-chain fatty acids on the healing of colonic anastomosis in the rat. Surgery 100:198–203

    Google Scholar 

  72. Rolandelli RH, Koruda MJ, Settle RG, Rombeau JL (1986) The effect of enteral feedings supplemented with pectin on the healing of colonic anastomoses in the rat. Surgery 99:703–707

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latella, G., Caprilli, R. Metabolism of large bowel mucosa in health and disease. Int J Colorect Dis 6, 127–132 (1991). https://doi.org/10.1007/BF00300209

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300209

Keywords

Navigation