Skip to main content
Log in

Elektrophysiologische Untersuchung von peripheren, corticalen und thalamischen Verbindungen zu Neuronen der bulbären Trigeminuskerne der Katze

Electrophysiological investigation of peripheral, cortical and thalamic connections of bulbar trigeminal neurons in the cat

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

1. Functional properties of excitatory connections from cortex, thalamus and periphery to a total of 438 trigeminal bulbar neurons of the cat have been investigated extracellularly. For the sample considered, correlations between latency of response to ipsilateral electrical single stimuli, contralateral electrical thalamic single and serial stimuli (N. ventralis posteromedialis) and also contralateral electrical cortical single and serial stimuli (somatosensory areas S I, S II) were established.

2. With increasing peripheral latency of response, the percentage of neurons responding to central stimulation increased as well.

3. Neurons following thalamic, cortical or peripheral stimulation frequencies of 50 cps or more showed in the average shorter latencies of response compared with neurons that could not be driven with 50 cps stimulation.

4. Bulbar neurons antidromically invaded by stimulation of the thalamus showed shorter latencies to peripheral, thalamic and cortical stimuli compared with other neurons.

5. Lemniscal neurons that could be activated monosynaptically by cortical stimulation have been observed.

6. Neurons with a small peripheral receptive field had in the average a shorter latency to peripheral stimuli than neurons with a large receptive field.

7. Responses to peripheral stimuli could be inhibited by preceding thalamic and cortical stimuli.

8. Possible pathways that are involved in transmission of thalamo-bulbar effects have been discussed and schematically represented.

9. All results have been examined by means of statistical methods.

Zusammenfassung

1. Funktionelle Eigenschaften der excitatorischen Verbindungen von Cortex, Thalamus und Peripherie zu 438 Neuronen der bulbären Trigeminuskerne wurden untersucht. Es konnten Beziehungen zwischen den Latenzzeiten der Antworten auf ipsilaterale, periphere Einzelreize, contralaterale thalamische Einzel- und Serienreize (N. ventralis posteromedialis) und contralaterale corticale Einzel- und Serienreize (somatosensorisches Projektionsgebiet S I, S II) nachgewiesen werden.

2. Für die Gesamtheit der Neurone wurde mit zunehmender Latenzzeit der Entladung auf periphere Reize eine Zunahme der prozentualen Ansprechbarkeit und der Latenzzeit der Antwort auf zentrale Reize beobachtet.

3. Die Neurone, deren periphere, thalamische und corticale Antworten Reizfrequenzen von 50 Hz und mehr folgten, hatten im Mittel kürzere periphere Latenzzeiten als Neurone, die Reizfrequenzen von 50 Hz nicht folgten.

4. Bulbäre Neurone, die mit thalamischen Reizen antidrom erregt wurden (lemniscale Neurone), unterschieden sich im Mittel von den übrigen Neuronen durch kürzere Latenzzeiten für periphere und zentrale Reize.

5. Es wurden lemniscale Neurone beobachtet, die mit corticalen Reizen monosynaptisch erregt werden konnten.

6. Neurone mit kleinen peripheren rezeptiven Feldern hatten im Mittel kürzere Latenzzeiten auf periphere Reize als Neurone mit großen rezeptiven Feldern.

7. Die periphere Reizantwort von Neuronen konnte durch vorausgehende thalamische und corticale Reize gehemmt werden. Im Mittel wurde die Hemmung bei Neuronen mit Latenzzeiten auf periphere Reize häufiger beobachtet.

8. Mögliche Bahnen, die an der Übertragung thalamo-bulbärer Effekte beteiligt sind, wurden diskutiert und schematisch dargestellt.

Die Ergebnisse wurden mit statistischen Methoden geprüft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Te:

Test

L:

Latenz = Latenzzeit

Te-Reiz:

Testreiz = peripherer Reiz

Te-L:

Latenzzeit auf peripheren Reiz

CoS:

corticaler Einzelreiz (single)

CoTr:

corticaler Serienreiz (train)

CoS-L:

Latenzzeit auf corticalen Einzelreiz

CoTr-L:

Latenzzeit auf corticalen Serienreiz

ThS:

thalamischer Einzelreiz (single)

ThTr:

thalamischer Serienreiz (train)

ThS-L:

Latenzzeit auf thalamischen Einzelreiz

ThTr-L:

Latenzzeit auf thalamischen Serienreiz

VPM:

Nucleus ventralis posteromedialis des ventrobasalen Komplexes des Thalamus

S I, S II :

somatosensorische, corticale Projektionsgebiete des N. Trigeminus

Literatur

  1. Andersen, P., J. C. Eccles, T. Oshima, and R. F. Schmidt: Mechanisms of synpatic transmission in the cuneate nucleus. J. Neurophysiol. 27, 1096–1116 (1964).

    Google Scholar 

  2. R. F. Schmidt, and T. Yokota: Slow potential waves produced in the cuneate nucleus by cortical stimulation. J. Neurophysiol. 27, 78–91 (1964).

    Google Scholar 

  3. — Depolarisation of presynaptic fibres in the cuneate nucleus. J. Neurophysiol. 27, 92–106 (1964).

    Google Scholar 

  4. — Identification of relay cells and interneurons in the cuneate nucleus. J. Neurophysiol. 27, 1080–1095 (1964).

    Google Scholar 

  5. — and T. A. Sears: Cortically evoked depolarisation of primary afferent fibers in the spinal cord. J. Neurophysiol. 27, 63–77 (1964).

    Google Scholar 

  6. Aström, K. E.: On the central course of afferent fibres in the trigeminal, facial, glossopharyngeal and vagal nerves and their nuclei in the mouse. Acta physiol. scand. 29, Suppl. 106, 209–320 (1952).

    Google Scholar 

  7. Bishop, P. O., W. Burke, and R. Davis: The identification of single units in central pathways. J. Physiol. (Lond.) 162, 409–431 (1962).

    Google Scholar 

  8. Brodal, A., T. Szabo, and A. Torvik: Corticofugal fibers to sensory trigeminal nuclei and nucleus of solitary tract. J. comp. Neurol. 106, 527–555 (1956).

    Google Scholar 

  9. Calma, I.: Thalamo-cortical relations in the sensory nuclei of the cat. Nature (Lond.) 205, 394–396 (1965).

    Google Scholar 

  10. — Presynaptic inhibition of the terminals of cutaneous nerve fibres by stimulation of the thalamodiencephalic region. J. Physiol. (Lond.) 185, 58–60 (1966).

    Google Scholar 

  11. Clare, M. H., W. M. Landau, and G. H. Bishop: Electrophysiological evidence of a collateral pathway from the pyramidal tract to the thalamus in the cat. Exp. Neurol. 9, 262–267 (1964).

    Google Scholar 

  12. Darian-Smith, I.: Neurone activity in the cat's trigeminal main sensory nucleus elicited by graded afferent stimulation. J. Physiol. (Lond.) 153, 52–73 (1960).

    Google Scholar 

  13. — Cortical projections of thalamic neurones excited by mechanical stimulation of the face of the cat. J. Physiol. (Lond.) 171, 339–360 (1964).

    Google Scholar 

  14. — Presynaptic component in the afferent inhibition observed within trigeminal brain-stem nuclei of the cat. J. Neurophysiol. 28, 695–709 (1965).

    Google Scholar 

  15. — Neural mechanisms of facial sensation. Int. Rev. Neurobiol. 9, 301–395 (1966).

    Google Scholar 

  16. J. Isbister, K. Mok, and T. Yokota: Somatic sensory cortical projection areas excited by tactile stimulation of the cat. A triple representation. J. Physiol. (Lond.) 182, 671–689 (1966).

    Google Scholar 

  17. —, and G. Mayday: Somatotopic organization within the brain-stem trigeminal complex of the cat. Exp. Neurol. 2, 290–309 (1960).

    Google Scholar 

  18. P. Mutton, and R. Proctor: Functional organization of tactile cutaneous afferents within the semilunar ganglion and trigeminal spinal tract of the cat. J. Neurophysiol. 28, 682–694 (1965).

    Google Scholar 

  19. —, and G. Phillips: Secondary neurones within a trigemino-cerebellar projection to the anterior lobe of the cerebellum in the cat. J. Physiol. (Lond.) 170, 53–58 (1964).

    Google Scholar 

  20. — and R. D. Ryan: Functional organization in the trigeminal main sensory and rostral spinal nuclei of the cat. J. Physiol. (Lond.) 168, 129–146 (1963).

    Google Scholar 

  21. R. Proctor, and R. D. Ryan: A single-neurone investigation of somatotopic organization with the cat's trigeminal brain-stem nuclei. J. Physiol. (Lond.) 168, 147–157 (1963).

    Google Scholar 

  22. —, and T. Yokota: Cortical evoked depolarization of trigeminal cutaneous afferent fibers in the cat. J. Neurophysiol. 29, 170–184 (1966).

    Google Scholar 

  23. — Corticofugal effects on different neuron types within the cat's brain stem activated by tactile stimulation on the face. J. Neurophysiol. 29, 185–206 (1966).

    Google Scholar 

  24. Documenta Geigy, Wissenschaftliche Tabellen. Hrsg. J. R. Geigy AG., Basel, Pharmazeutische Abteilung. 6. Aufl. 1960.

  25. Dubner, R.: Interaction of peripheral and central input in the main sensory trigeminal nucleus of the cat. Exp. Neurol. 17, 186–202 (1967).

    Google Scholar 

  26. Eisenman, J., G. Fromm, S. Landgren, and D. Novin: The ascending projections of trigeminal neurones in the cat, investigated by antidromic stimulation. Acta physiol. scand. 60, 337–350 (1964).

    Google Scholar 

  27. -- S. Landgren, and D. Novin: Functional organization in the main sensory trigeminal nucleus and in the rostral subdivision of the nucleus of the spinal trigeminal tract in the cat. Acta physiol. scand. 59, Suppl. 214 (1963).

  28. Erickson, R. P., R. L. King, and C. Pfaffmann: Some characteristics of transmission through spinal trigeminal nucleus of cat. J. Neurophysiol. 24, 621–632 (1961).

    Google Scholar 

  29. Gordon, G., and D. Horrobin: Antidromic and synaptic responses in the cat's gracile nucleus to cerebellar stimulation. Brain Res. 5, 419–421 (1967).

    Google Scholar 

  30. —, and M. G. M. Jukes: Dual organization of the exteroceptive components of the cat's gracile nucleus. J. Physiol. (Lond.) 173, 263–290 (1964).

    Google Scholar 

  31. — Descending influences on the exteroceptive organization of the cat's gracile nucleus. J. Physiol. (Lond.) 173, 291–319 (1964).

    Google Scholar 

  32. S. Landgren, and W. A. Seed: The functional characteristics of single cells in the caudal part of the spinal nucleus of the trigeminal nerve of the cat. J. Physiol. (Lond.) 158, 544–559 (1961).

    Google Scholar 

  33. Guzman-Flores, C., F. P. Gault, C. Anderson, and D. B. Lindsley: Pyramidal influences upon potentials evoked in sensory nuclei. Boletin del Instituto de Etudios Medicos y Biologicos 21, 65–74 (1963).

    Google Scholar 

  34. Hammer, B., R. Tarnecki, L. Vyklicky, and M. Wiesendanger: Corticofugal control of presynaptic inhibition in the spinal trigeminal complex of the cat. Brain Res. 1, 216–218 (1966).

    Google Scholar 

  35. Harris, F., S. J. Jabbur, R. W. Morse, and A. L. Towe: Influence of the cerebral cortex on the cuneate nucleus of the monkey. Nature (Lond.) 208, 1215–1216 (1965).

    Google Scholar 

  36. Harrison, F., and K. B. Cobin: Oscillographic studies on the spinal tract of the fifth cranial nerve. J. Neurophysiol. 5, 464–482 (1942).

    Google Scholar 

  37. Hubel, D. H.: Single unit activity in striate cortex of unrestrained cats. J. Physiol. (Lond.) 147, 226–238 (1959).

    Google Scholar 

  38. Jabbur, S. J., and A. L. Towe: Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J. Neurophysiol. 24, 499–509 (1961).

    Google Scholar 

  39. Jasper, H. H., and C. Ajmone-Marsan: A stereotaxic atlas of the diencephalon of the cat. The international research council of Canada, Ottawa, 2 Canada, 1960, University of Toronto Press.

    Google Scholar 

  40. Kerr, W. L.: The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa. Exp. Neurol. 16, 359–376 (1966).

    Google Scholar 

  41. Kruger, L., and F. Michel: A morphological and somatotopic analysis of single unit activity in trigeminal sensory complex of the cat. Exp. Neurol. 5, 139–156 (1962).

    Google Scholar 

  42. — Reinterpretation of the representation of pain based on physiological excitation of single neurons in the trigeminal sensory complex. Exp. Neurol. 5, 157–178 (1962).

    Google Scholar 

  43. R. Siminoff, and P. Witkovsky: Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. J. Neurophysiol. 24, 333–349 (1961).

    Google Scholar 

  44. Kuypers, H. G. J. M.: An anatomical analysis of cortico-bulbar connections to the pons and lower brain stem in the cat. J. Anat. (Lond.) 92, 198–218 (1958).

    Google Scholar 

  45. Levitt, M., M. Carreras, C. N. Liu, and W. W. Chambers: Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Arch. ital. Biol. 102, 197–229 (1964).

    Google Scholar 

  46. Maxwell, A. E.: Analysing qualitative data. Methuen's monographs on applied probability and statistics. (Ed.: Maurice Barlett.) London: Methuen 1961.

    Google Scholar 

  47. McKinley, A. W., and H. W. Magoun: The bulbar projection of the trigeminal nerve. Amer. J. Physiol. 137, 217–224 (1942).

    Google Scholar 

  48. Meessen, H., and J. Olszewski: Cytoarchitektonischer Atlas des Rautenhirns des Kaninchens. Basel: S. Karger 1949.

    Google Scholar 

  49. Olszewski, J.: On the anatomical and functional organization of the trigeminal nucleus. J. comp. Neurol. 92, 401–409 (1950).

    Google Scholar 

  50. Poggio, G. F., and V. B. Mountcastle: A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopk. Hosp. 106, 266–316 (1960).

    Google Scholar 

  51. Ralston, H. J.: The organization of the substantia gelatinosa rolandi in the cat lumbosacral spinal cord. Z. Zellforsch. 67, 1–23 (1965).

    Google Scholar 

  52. Scheibel, M. E., and A. B. Scheibel: Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res. 6, 60–94 (1967).

    Google Scholar 

  53. Shimazu, H., N. Yanagisawa, and B. Garoutte: Cortico-pyramidal influences on thalamic somatosensory transmission in the cat. Jap. J. Physiol. 15, 101–124 (1965).

    Google Scholar 

  54. Stewart, D. H., jr., and R. B. King: Effect of conditioning stimuli upon evoked potentials in the trigeminal complex. J. Neurophysiol. 29, 442–455 (1966).

    Google Scholar 

  55. C. J. Scibetta, and R. B. King: Presynaptic inhibition in the trigeminal relay nuclei. J. Neurophysiol. 30, 135–153 (1967).

    Google Scholar 

  56. Tasaki, I., E. H. Polley, and F. Orrego: Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol. 17, 454–474 (1954).

    Google Scholar 

  57. Thomas, R. C., and V. J. Wilson: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 211–213 (1965).

    Google Scholar 

  58. — Marking single neurons by staining with intracellular recording microelectrodes. Science 151, 1538–1539 (1966).

    Google Scholar 

  59. Torvik, A.: The ascending fibers from the main trigeminal sensory nucleus. Amer. J. Anat. 100, 1–16 (1957).

    Google Scholar 

  60. Towe, A. L., and S. J. Jabbur: Cortical inhibition of neurons in dorsal column nuclei of cat. J. Neurophysiol. 24, 488–498 (1961).

    Google Scholar 

  61. —, and I. D. Zimmerman: Peripherally evoked cortical reflex in the cuneate nucleus. Nature (Lond.) 194, 1250–1251 (1962).

    Google Scholar 

  62. Verhaart, W. J. C.: A stereotaxic atlas of the brain stem of the cat. Part I et II. Assen: Van Gorcum 1964.

    Google Scholar 

  63. Wall, P. D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.) 142, 1–21 (1958).

    Google Scholar 

  64. —, and A. Taub: Four aspects of trigeminal nucleus and a paradox. J. Neurophysiol. 25, 110–126 (1962).

    Google Scholar 

  65. Wiesendanger, M., B. Hammer, and R. Tarnecki: Corticofugal control of the presynaptic inhibition in the spinal trigeminal nucleus of the cat. The effect of pyramidotomy and barbiturates. Schweiz. Arch. Neurol. Neurochir. Psychiat. 100, 39–60 (1967).

    Google Scholar 

  66. Wilson, V. J., M. Kato, R. C. Thomas, and B. W. Peterson: Excitation of lateral vestibular neurons by peripheral afferent fibers. J. Neurophysiol. 29, 508–529 (1966).

    Google Scholar 

  67. Winter, D. L.: N. gracilis of cat. Functional organization and corticofugal effects. J. Neurophysiol. 28, 48–70 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung des Schweizerischen Nationalfonds für die wissenschaftliche Forschung Nr. 4447 und Nr. 4356, sowie der Hartmann-Müller Stiftung für medizinische Forschung in Zürich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, B. Elektrophysiologische Untersuchung von peripheren, corticalen und thalamischen Verbindungen zu Neuronen der bulbären Trigeminuskerne der Katze. Pflügers Archiv 299, 261–284 (1968). https://doi.org/10.1007/BF00362589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362589

Key-Words

Schlüsselwörter

Navigation