Skip to main content
Log in

Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog

Effect of α- or β-adrenergic blockade on the reflex response

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Flow velocity in the ascending aorta and aortic blood pressure were recorded continuously in healthy conscious dogs. Using implanted pneumatic cuffs the effect of bilateral carotid occlusion on heart rate, stroke volume, cardiac output, peak velocity, maximum acceleration, blood pressure, and total peripheral resistance (T.P.R.) was studied in the resting animal.

Following carotid occlusion heart rate rose within 3–4 sec by 13 beats/min; during the steady state it exceeded the control by 8 beats/min.

Cardiac output closely followed heart rate, since stroke volume decreased slightly (3–4%), mainly because of the elevated aortic pressure. During the first 3–4 sec cardiac output increased by 10–15% reaching a steady state level 8% above control.

The initial fast increase of cardiac output caused mean aortic pressure to rise rapidly, while T.P.R. transiently decreased. Subsequently T.P.R. rose, causing a secondary slow increase of pressure. During the steady state blood pressure was elevated by 27 mm Hg (26%), T.P.R. by 12.1 mm Hg×l−1×min (20%).

Maximum acceleration did not change with heart rate and was hardly affected (−1.5%) by the pressure rise. Peak velocity was little influenced by heart rate; it decreased by 7% mainly because of the elevated aortic pressure.

β-blockade (0.5 mg/kg propranolol) affected T.P.R. only during control (+18%), but did not modify the time course of the reflex and its steady state changes.

α-blockade (5.0 mg/kg phenoxybenzamine) decreased aortic mean pressure (5 mm Hg) and T.P.R. (7%) during control. Following carotid occlusion T.P.R. rose by the same amount, but much more slowly. Starting from the lower control the same pressure level was now obtained by a higher reflex increase of heart rate and cardiac output.

It is concluded that the initial pressor response is initiated by an increase of cardiac output mediated by vagal inhibition. The secondary rise of blood pressure is predominantly caused by an increase of T.P.R. due to autoregulation in some vascular beds. The higher stroke work during the reflex is not accomplished by an increased contractility due to sympathetic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anrep, G.: On the part played by the suprarenals in the normal vascular reactions of the body. J. Physiol. (Lond.)45, 307 (1912).

    Google Scholar 

  2. Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.)28, 220 (1902).

    Google Scholar 

  3. Bond, R. F., Green, H. D.: Cardiac output redistribution during bilateral common carotid occlusion. Amer. J. Physiol.216, 393 (1969).

    Google Scholar 

  4. Chungcharoen, D., DeBurgh Daly, M., Neil, E., Schweitzer, A.: The effect of carotid occlusion upon the intrasinusal pressure with special reference to vascular communications between the carotid and vertebral circulations in the dog, cat and rabbit. J. Physiol. (Lond.)117, 56 (1952).

    Google Scholar 

  5. Corcondilas, A., Donald, D. E., Shepherd, J. T.: Assessment of two independent methods of the role of the cardiac output in the pressor response to carotid occlusion. J. Physiol. (Lond.)170, 250 (1964).

    Google Scholar 

  6. Daly, M. de B., Hazzledine, J. L.: Cited by A. M. Brown, H. N. Duke and N. Joels: J. Physiol. (Lond.)165, 266 (1963).

    Google Scholar 

  7. De Vleeschouwer, G. R., Heymans, C.: Baroreceptors and reflex regulation of heart rate, p. 189. In: Baroreceptors and hypertension. New York: Pergamon 1967.

    Google Scholar 

  8. Deppe, B., Wetterer, E.: Untersuchungen über die Beziehungen zwischen Druck und Stromstärke im Kreislauf des Affen. Z. Biol.100, 337 (1940).

    Google Scholar 

  9. Euler, U. S., von, Liljestrand, G.: Chemical stimulation of the carotid sinus and the regulation of respiration. Skand. Arch. Physiol.74, 101 (1936).

    Google Scholar 

  10. Fearon, R. E.: Propranolol in the prevention of ventricular fibrillation due to experimental coronary artery occlusion. Amer. J. Cardiol.20, 222 (1967).

    Google Scholar 

  11. Frank, O.: Zur Dynamik des Herzmuskels. Z. Biol.32, 370 (1895).

    Google Scholar 

  12. Gellhorn, E.: The significance of the state of the central autonomic nervous system for quantitative and qualitative aspects of some cardiovascular reactions. Amer. Heart J.67, 106 (1964).

    Google Scholar 

  13. Gessner, U., Bergel, D. H.: Frequency response of electromagnetic flowmeters. J. appl. Physiol.19, 1209 (1964).

    Google Scholar 

  14. Granata, L., Caraffa Braga, E., Cevese, A., Data, P. G.: Beta adrenergic receptor activity in peripheral vascular beds of the unanesthetized dog. Pflügers Arch.320, 64 (1970).

    Google Scholar 

  15. Gross, R., Kirchheim, H.: Der Einfluß eines doppelseitigen Carotisverschlusses auf den Blutdruck, das Schlagvolumen und Herzzeitvolumen bei konstant gehaltener Herzfrequenz am wachen Hund. Pflügers Arch.312, R18 (1969).

    Google Scholar 

  16. Heymans, C., Bouckaert, J. J.: Sinus caroticus and respiratory reflexes. I. Cerebral blood flow and respiration. Adrenaline apnoe. J. Physiol. (Lond.)69, 254 (1930).

    Google Scholar 

  17. —, Neil, E.: Reflexogenic areas of the cardiovascular system. Boston: Little, Brown & Co 1958.

    Google Scholar 

  18. Hollenberg, M., Carrière, S., Barger, A. C.: Biphasic action of acetylcholine on ventricular myocardium. Circulat. Res.16, 527 (1965).

    Google Scholar 

  19. Iriuchijima, J., Koike, H.: Carotid flow, intrasinusal pressure and collateral flow during carotid occlusion. Amer. J. Physiol.218, 876 (1970).

    Google Scholar 

  20. Kezdi, P.: Baroreceptors and Hypertension. New York: Pergamon 1967.

    Google Scholar 

  21. Kirchheim, H.: Effect of common carotid occlusion on arterial blood pressure and on kidney blood flow in unanesthetized dogs. Pflügers Arch.306, 119 (1969).

    Google Scholar 

  22. —, Gross, R.: Schlagvolumen, Strömungsgeschwindigkeit und Beschleunigung in der Aorta ascendens bei unterschiedlich verursachter Tachykardie am wachen Hund. Pflügers Arch.312, R17 (1969).

    Google Scholar 

  23. ——: Das Verhalten von Blutdruck und Nierendurchblutung während des Carotissinusreflexes am wachen Hund. Vergleichende Untersuchungen zum Einfluß von Na-Pentobarbitalnarkose und chirurgischer Präparation auf den Reflexerfolg. Pflügers Arch.315, 159 (1970).

    Google Scholar 

  24. ——: Das Verhalten der Nierendurchblutung und des Nierenumfangs bei Blutdrucksteigerungen durch doppelseitigen Carotisverschluß oder Schritt-machertachykardie. Untersuchungen zur Autoregulation der Nierendurchblutung am wachen Hund. Pflügers Arch.320, 79 (1970).

    Google Scholar 

  25. ——, Hardt, D., Keintzel, B.: Die “reine” Druck-Stromstärke-Beziehung der autoregulierenden Hundeniere. Pflügers Arch.319, R38 (1970).

    Google Scholar 

  26. Konigsberg, E.: A pressure transducer for chronic intravascular implantation. In: Biomedical sciences instrumentation, p. 259. New York: Plenum Press 1967.

    Google Scholar 

  27. Koppanyi, T., Linegar, C. R., Dille, J. M.: The peripheral action of barbiturates. Science82, 232 (1935).

    Google Scholar 

  28. Levy, M. N., Zieske, H.: Effect of enhanced contractility on the left ventricular response to vagus nerve stimulation in dogs. Circulat. Res.24, 303 (1969).

    Google Scholar 

  29. McDonald, D. A.: Blood flow in arteries. London: Edw. Arnold Ltd. 1960.

    Google Scholar 

  30. Mitchell, J. H., Mierzwiak, D. S., Wildenthal, K., Willis, W. D., Jr., Smith, A. M.: Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Circulat. Res.22, 507 (1968).

    Google Scholar 

  31. Muscholl, E., Rahn, K. H.: Adrenerge α- and β-Receptoren und ihre spezifischen Hemmstoffe. Klin. Wschr.46, 113 (1968).

    Google Scholar 

  32. Nickerson, M.: The pharmacology of adrenergic blockade. Pharmacol. Rev.1, 27 (1949).

    Google Scholar 

  33. Noble, M. I. M.: The contribution of blood momentum to left ventricular ejection in the dog. Circulat. Res.23, 663 (1968).

    Google Scholar 

  34. —, Trenchard, D., Guz, A.: Left ventricular ejection in conscious dogs. I. Measurement and significance of the maximum acceleration of blood from the left ventricle. Circulat. Res.19, 139 (1966).

    Google Scholar 

  35. ———: Left ventricular ejection in conscious dogs. II. Determinants of stroke volume. Circulat. Res.19, 148 (1966).

    Google Scholar 

  36. ———: Effect of changing heart rate on cardiovascular function in the conscious dog. Circulat. Res.19, 206 (1966).

    Google Scholar 

  37. —, Wyler, J., Milne, E. N. C., Trenchard, D., Guz, A.: Effect of changes in heart rate on left ventricular performance in conscious dogs. Circulat. Res.24, 285 (1969).

    Google Scholar 

  38. Olmsted, F., McCubbin, J. W., Page, I. H.: Hemodynamic cause of the pressor response to carotid occlusion. Amer. J. Physiol.210, 1342 (1966).

    Google Scholar 

  39. Öberg, P. A., Sjöstrand, U.: Studies of blood pressure regulation. I. Common carotid artery clamping in studies of the carotid-sinus baroreceptor control of the systemic blood pressure. Acta physiol. scand.75, 276 (1969).

    Google Scholar 

  40. Page, I. H., Mc. Cubbin, J. W.: Autonomic regulation of arterial blood pressure. Arch. int. Pharmacodyn.157, 152 (1965).

    Google Scholar 

  41. Patterson, S. W., Piper, H., Starling, E. H.: The regulation of the heart beat. J. Physiol. (Lond.)48, 465 (1914).

    Google Scholar 

  42. Robinson, B. F., Epstein, S. E., Beiser, G. D., Braunwald, E.: Control of heart rate by the autonomic nervous system. Circulat. Res.19, 400 (1966).

    Google Scholar 

  43. Rushmer, R. F.: Effects of stimulation of nerves and hormones on the heart; role of the heart in general circulatory regulation. In: Handbook of physiology, Circulation, Sec. 2, vol. 1. Washington: Amer. Physiol. Soc. 1962.

    Google Scholar 

  44. —: Origins of pulsatile flow: the ventricular impulse generators. In: Pulsatile blood flow, p. 221. New York: McGraw-Hill 1964.

    Google Scholar 

  45. —: Recent advances in cardiovascular physiology. Anesth. Analg. Curr. Res.45, 383 (1966).

    Google Scholar 

  46. Sagawa, K.: Analysis of the CNS ischemic feedback regulation of the circulation. In: Physical basis of circulatory transport: regulation and exchange. Philadelphia-London: W. B. Saunders Comp. 1967.

    Google Scholar 

  47. —, Watanabe, K.: Summation of bilateral sinus signals in the barostatic reflex. Amer. J. Physiol.209, 1278 (1965).

    Google Scholar 

  48. Samaan, A.: The antagonistic cardiac nerves and heart rate. J. Physiol. (Lond.)83, 332 (1935).

    Google Scholar 

  49. Sarnoff, S. J., Gilmore, J. P., Remensnyder, J. P.: Homeometric autoregulation in the heart. Circulat. Res.8, 1077 (1960).

    Google Scholar 

  50. Scher, A. M., Kehl, T. H., Young, A. C.: A model of stroke volume control in the resting dog. In: Physical basis of circulatory transport: regulation and exchange. Philadelphia-London: W. B. Saunders Comp. 1967.

    Google Scholar 

  51. —, Young, A. C.: Reflex control of heart rate in the unanesthetized dog. Amer. J. Physiol.218, 780 (1970).

    Google Scholar 

  52. Schmidt, C. F.: Carotid sinus reflexes to the respiratory center. I. Identification. Amer. J. Physiol.102, 94 (1932).

    Google Scholar 

  53. Somani, P., Bachand, R. T.: Antiarrhythmic actions of propranolol in the dog heart-lung preparation. Amer. Heart J.74, 222 (1967).

    Google Scholar 

  54. Spencer, M. P., Denison, A. B.: Square wave electromagnetic flowmeter: theory of operation and design of magnetic probes for clinical and experimental applications. I.R.E. Transactions Med. Electron. ME6, 220 (1959).

    Google Scholar 

  55. Stanton, H. C., Vick, R. L.: Cholinergic and adrenergic influences on right ventricular myocardial contractility in the dog. Arch. int. Pharmacodyn.176, 233 (1968).

    Google Scholar 

  56. Stone, H. L., Bishop, U. S.: Ventricular output in conscious dogs following acute vagal blockade. J. appl. Physiol.24, 782 (1968).

    Google Scholar 

  57. ——, Dong, E.: Ventricular function in cardiac-denervated and cardiac sympathectomized conscious dogs. Circulat. Res.20, 587 (1967).

    Google Scholar 

  58. Wang, S. C., Mazzella, H., Heymans, C.: Hemodynamic studies on the carotid sinus pressoreceptive reflex: effects of occluding efferent branches of carotid bifurcation upon the sinus pressur responses. Arch. int. Pharmacodyn.90, 1 (1952).

    Google Scholar 

  59. Warner, H. R., Cox, A.: A mathematical model of heart rate control by sympathetic and vagus efferent information. J. appl. Physiol.17, 349 (1962).

    Google Scholar 

  60. —, Russell, R. O., Jr.: Effect of combined sympathetic and vagal stimulation on heart rate in the dog. Circulat. Res.24, 567 (1969).

    Google Scholar 

  61. Wilcken, D. E. L., Charlier, A. A., Hoffman, J. I. E., Guz, A.: Effects of alterations in aortic impedance on the performance of the ventricles. Circulat. Res.14, 283 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the Deutsche Forschungsgemeinschaft.

A preliminary report of a portion of this work was presented before the Deutsche Physiologische Gesellschaft, Mainz, March 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheim, H., Gross, R. Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Pflugers Arch. 327, 203–224 (1971). https://doi.org/10.1007/BF00586859

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586859

Key-Words

Navigation