Skip to main content
Log in

Estimation of myocardial blood flow heterogeneity by transorgan helium transport functions

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Following single breath inhalations of helium 49 simultaneous inlet-outlet pairs of helium dilution curves were recorded in seven dog experiments from the aortic and coronary sinus blood by use of mass spectrometric technique. After numeric deconvolution of the dilution curves the weighting function of tracer transit times was used for calculation of the mean myocardial blood flow per unit of tissue, which closely correlated with directly measured flow. Secondly, the degree of blood flow heterogeneity was estimated from the first moments of the weighting function of transit times and by compartmental analysis based on an inverse Laplace transform. In the intact heart the results suggest a rather constant dispersion of flows relative to the mean flowFF in the order of σ/FF=0.3. The apparent dispersion of flows is increased by α-adrenergic stimulation with pressure and volume load, particularly in a state of β-blockade, a finding, which may be attributed to variations of intercapillary distances and to a heterogeneity of blood flow per unit of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baller D, Wolpers HG, Zipfel J, Hoeft A, Hellige A (1981) Unfavourable effects of ventricular pacing on myocardial energetics. Basic Res Cardiol 76:115–123

    Article  PubMed  CAS  Google Scholar 

  2. Bassingthwaighte JB (1977) Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout. Progr Cardiovasc Dis 20:165–189

    Article  CAS  Google Scholar 

  3. Bassingthwaighte JB, Dobbs WA, Yipintsoi TV (1972) Heterogeneity of myocardial blood flow. In: Maseri A (ed) Myocardial blood flow in man. Minerva Med, Torino, pp 197–205

    Google Scholar 

  4. Bassingthwaighte JB, Knopp TJ, Hazelrig JB (1970) A concurrent flow model for capillary — tissue exchanges. In: Crone C, Lassen NA (eds) Capillary permeability (Alfred Benzon Symposium II). Copenhagen, Munksgaard, pp 60–80

    Google Scholar 

  5. Bretschneider HJ (1962) Methoden zur Messung der Durchblutung mit einem hohen zeitlichen Auflösungsvermögen. In: Krauss H, Klepzig H (Hrsg) Kreislaufmessungen, 3. Freiburger Colloquium, München-Gräfeling

  6. Coulam CM, Warner HR, Wood EH, Bassingthwaighte JB (1966) A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator-dilution curves. Circ Res 19:879–890

    PubMed  CAS  Google Scholar 

  7. Gaver DP (1966) Observing stochastic processes, and approximate transform inversion. Oper Res 14:444–459

    Article  Google Scholar 

  8. Gersing E, Geppert V, Hellige G (1979) Ein rechner-gekoppeltes Zwillings-Massenspektrometer zur on-line Blutgas-Analyse. Biomed T 24:265–266

    Article  Google Scholar 

  9. Heiss HW, Hensel I, Kettler D, Tauchert M, Bretschneider HJ (1973) Über den Anteil des Koronarsinus-Ausflusses an der Myokarddurchblutung des linken Ventrikels. Z Kardiol 62:593–606

    PubMed  CAS  Google Scholar 

  10. Kawashiro T, Carles AC, Perry SF, Piiper J (1975) Diffusivity of various inert gases in rat skeletal muscle. Pflügers Arch Ges Physiol 359:219–230

    Article  CAS  Google Scholar 

  11. Klocke FJ, Bunnell IL, Greene DG, Wittenberg SM, Visco JP (1974) Average coronary blood flow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 50:547–559

    PubMed  CAS  Google Scholar 

  12. Knopp TJ, Dobbs WA, Greenleaf JF, Bassingthwaighte JB (1976) Transcoronary intravascular transport functions obtained via a stable deconvolution technique. Ann Biomed Eng 4:44–59

    Article  PubMed  CAS  Google Scholar 

  13. Lassen NA, Pearl WPh (1979) Tracer kinetic methods in medical physiology. Raven Press, New York

    Google Scholar 

  14. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  15. Okubo T, Lenfant C (1968) Distribution function of lung volume and ventilation determined by lung N2 washout. J Appl Physiol 24:658–667

    PubMed  CAS  Google Scholar 

  16. Paynter HM (1952) Methods and results from M. I. T. studies in unsteady flow. Boston Soc Civil Engineers J 39:120–165

    Google Scholar 

  17. Peslin R, Dawson S, Mead J (1971) Analysis of multicomponent exponential curves by the Post-Widder's equation. J Appl Physiol 30:462–472

    PubMed  CAS  Google Scholar 

  18. Stehfest H (1970) Numerical inversion of Laplace transforms. Comm ACM 13:47–49

    Article  Google Scholar 

  19. Wolpers HG, Baller D, Gersing E, Geppert V, Hoeft A, Schroeter W, Zipfel J, Hellige G (1981) Weiterentwicklung der Koronardurchblutungsmessung mit der Argontechnik durch massenspektrometrischen Blutgasnachweis. Z Kardiol 70:317 (Abstract)

    Google Scholar 

  20. Yipintsoi T, Bassingthwaighte JB (1973) Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ Res 27:461–477

    Google Scholar 

  21. Yipintsoi T, Dobbs WA, Scanlon PD, Knopp TJ, Bassingthwaighte JB (1973) Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33:573–587

    PubMed  CAS  Google Scholar 

  22. Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, SFB 89 —Kardiologie Göttingen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolpers, H.G., Geppert, V., Hoeft, A. et al. Estimation of myocardial blood flow heterogeneity by transorgan helium transport functions. Pflugers Arch. 401, 217–222 (1984). https://doi.org/10.1007/BF00582586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582586

Key words

Navigation