Skip to main content
Log in

Base induced hyperpolarization of the cell potential in HCO 3 free perfused necturus renal proximal tubules

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Short-term peritubular alkalinization from 7.5 to 8.5 hyperpolarized (−8.8 mV) the basolateral membrane potential (V 1) in HCO 3 free Hepes buffered Necturus renal proximal tubule cells. This sustained base induced hyperpolarization (BIH) was associated with an increase in the peritubular apparent transference number for potassium (\(t_{K^ + } \)). The apparent transference number for potassium (\(t_{K^ + } \)) was estimated at pH 7.5 and 8.5 by raising peritubular K+ from 2.5 to 10 mmol/l.\(t_{K^ + } \) increased linearly asV 1 hyperpolarized, whereas\(t_{K^ + } \) measured in the presence of peritubular Ba2+ at pH 7.5 and 8.5 was nearly zero. However, the BIH persisted in the presence of barium at the peritubular, luminal or both sides of the epithelium. Moreover this BIH was also accompanied by a small hyperpolarization (−0.4 mV) of the transepithelial membrane potential (V 3) in the absence or presence of peritubular and/or luminal Ba2+. Therefore we conclude that BIH must originate from additional mechanisms other than an increase in peritubular or luminal potassium conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bello-Reuss E (1982) Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J Physiol (Lond) 326:49–63

    Article  CAS  Google Scholar 

  2. Biagi BA, Sohtell M (1986) pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am J Physiol 250:F261–F266

    CAS  PubMed  Google Scholar 

  3. Biagi B, Kubota T, Sohtell M, Giebisch G (1981) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240:F200–F210

    CAS  PubMed  Google Scholar 

  4. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  5. Boulpaep EL (1967) Ion permeability of the peritubular and luminal membrane of the renal tubular cell. In: Krück F (ed) Transport und Funktion intracellulärer Elektrolyte. Urban und Schwarzenberg, München Wien Baltimore, pp 98–105

    Google Scholar 

  6. Boulpaep EL (1970) Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In: Giebisch G (ed) Electrophysiology of epithelial cells. Schattauer, Stuttgart New York, pp 91–112

    Google Scholar 

  7. Boulpaep EL (1976) Electrical phenomena in the nephron. Kidney Int 9:88–102

    Article  CAS  PubMed  Google Scholar 

  8. Burckhardt BC, Frömter E (1987) Evidence for OH/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO 3 -free solutions. Pflügers Arch 409:132–137

    Article  CAS  PubMed  Google Scholar 

  9. Cemerikić D, Wilcox CS, Giebisch G (1982) Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion. J Membr Biol 69:159–165

    Article  PubMed  Google Scholar 

  10. Dietl P, Wang W, Oberleithner H (1987) K+ and HCO 3 conductances determine cell membrane potential in proximal tubule cells. Pflügers Arch 408 (Suppl. 1):R44 (167)

    Google Scholar 

  11. Dixon WJ, Brown MB, Engelman L, Frane JW, Hill MA, Jennrich RI, Toporek JD (1981) Analysis of variance and covariance. In: BMDP statistical software. University of California Press, Berkeley Los Angeles London, pp 347–436

    Google Scholar 

  12. Giebisch G (1961) Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol 44:659–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giebisch G, Sullivan LP, Whittembury G (1973) Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the pefused Necturus kidney. J Physiol 230:51–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granitzer M, Steels PS (1988) Effect of inhibitors and ion substitution and pH response ofV 1 in proximal tubular renal Necturus cells. Pflügers Arch 411 (Suppl. 1):R99 (187)

    Google Scholar 

  15. Greger R, Gögelein H (1987) Role of K+ conductive pathways in the nephron. Kidney Int 31:1055–1065

    Article  CAS  PubMed  Google Scholar 

  16. Guggino WB, Boulpaep EL, Giebisch G (1982) Electrical properties of chloride transport across the Necturus proximal tubule. J Membr Biol 65:185–196

    Article  CAS  PubMed  Google Scholar 

  17. Helman SI (1987) Basolateral membrane electrodiffusive H+ transport in epithelia of frog skin. Fed Proc 46:1270 (5557)

    Google Scholar 

  18. Kawahara K, Hunter M, Giebisch G (1987) Potassium channels in Necturus proximal tubule. Am J Physiol 253:F488–F494

    CAS  PubMed  Google Scholar 

  19. Kubota T, Biagi BA, Giebisch G (1983a) Intracellular potassium activity measurements in single proximal tubules of Necturus kidney. J Membr Biol 73:51–60

    Article  CAS  PubMed  Google Scholar 

  20. Kubota T, Biagi BA, Giebisch G (1983b) Effects of acid base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule of Necturus. J Membr Biol 73:61–68

    Article  CAS  PubMed  Google Scholar 

  21. Lang F, Oberleithner H, Giebisch G (1986) Electrophysiological heterogeneity of proximal convoluted tubules in Amphiuma kidney. Am J Physiol 251:F1063–F1072

    CAS  PubMed  Google Scholar 

  22. Matsumura Y, Cohen B, Guggino WB, Giebisch G (1984a) Electrical effects of potassium and bicarbonate on proximal tubule cells of Necturus. J Membr Biol 79:145–152

    Article  CAS  PubMed  Google Scholar 

  23. Matsumura Y, Cohen B, Guggino WB, Giebisch G (1984b) Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol 79:153–161

    Article  CAS  PubMed  Google Scholar 

  24. Maunsbach AB, Boulpaep EL (1984) Quantative ultrastructure and functional correlates in proximale tubule of Ambystoma and Necturus. Am J Physiol 246:F710–F724

    CAS  PubMed  Google Scholar 

  25. Messner G, Wang W, Paulmilch M, Oberleithner H, Lang F (1985) Ouabain decreases potassium-conductance in proximal tubulus of the amphibian kidney. Pflügers Arch 404:131–137

    Article  CAS  PubMed  Google Scholar 

  26. O'Regan MG, Malnic G, Giebisch G (1982) Cell pH and luminal acidification in Necturus proximal tubule. J Membr Biol 69:99–106

    Article  PubMed  Google Scholar 

  27. Paulmilch M, Gstraunthaler G, Lang F (1986) Electrical properties of Madin-Darby-canine-kidney cells. Effects of extracellular potassium and bicarbonate. Pflügers Arch 405:102–107

    Google Scholar 

  28. Planelles G, Teulon J, Anagnostopoulos T (1981) The effects of barium on the electrical properties of the basolateral membrane in proximal tubule. Arch Pharmacol 318:135–141

    CAS  Google Scholar 

  29. Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253:F476–F487

    CAS  PubMed  Google Scholar 

  30. Shindo T, Spring KR (1981) Chloride movement across the basolateral membrane of proximal tubule cells. J Membr Biol 58:35–42

    Article  CAS  PubMed  Google Scholar 

  31. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. The Iowa state university press, Ames, Iowa, USA

    Google Scholar 

  32. Steels PS, Boulpaep EL (1987) pH dependent electrical properties and buffer permeability of the Necturus renal proximal tubule cell. J Membr Biol 100:165–182

    Article  CAS  PubMed  Google Scholar 

  33. Teulon J, Anagnostopoulos T (1982) Proximal cell K+ activity: technical problems and dependence on plasma K+ concentration. Am J Physiol 243:F12–F18

    CAS  PubMed  Google Scholar 

  34. Zupka MT, Sullivan LP (1986) Effect of barium on potassium transport in amphibian kidney. Am J Physiol 251:F433–F443

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granitzer, M., Steels, P.S. Base induced hyperpolarization of the cell potential in HCO 3 free perfused necturus renal proximal tubules. Pflugers Arch. 412, 369–375 (1988). https://doi.org/10.1007/BF01907554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907554

Key words

Navigation