Skip to main content
Log in

The effect of D600 on potassium contractures of slow muscle fibres ofRana temporaria

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

(1) The effect of 30 μM D600 on the amplitude and time course of isometric contractures was studied in single slow fibres ofRana temporaria. (2) D600 only slightly reduced the amplitude of contractures evoked with 30 or 95 mM K-Ringer's. Maintenance of tension was strongly impaired by D600 only during exposure to 95 mM K. The caffeine contracture was not affected. (3) Addition of 10 mM Ca2+ or other divalent cations to the medium strongly counteracted the effect of D600 on maintained tension. The order of efficiency was Ca2+=Ni2+>Co2+>Mn2+>Mg2+. (4) During 2 min exposure to 95 mM K-Ringer's the slow fibres inactivated to a variable degree; recovery from inactivation in normal Ringer's proceeded with a half time of the order of 1 min, while in the presence of D600 recovery was prolonged 3.3 to 27 times. (5) It is concluded that the effect of D600 on the contractile behaviour of slow fibres fromRana temporaria is predominantly due to a prolongation of the inactivated state. It is suggested that D600 binds to a site at the outer membrane surface which also binds divalent cations and determines the degree of contractile inactivation during exposure to potassium. Blocking of Ca2+ channels is unlikely to be the mechanism of this D600-effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian H, Chandler WK, Rakowski RF (1976) Charge movement and mechanical repriming in skeletal muscle. J Physiol 254:361–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: Measurements with a vaselinegap technique. J Physiol 312:159–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almers W, Fink R, Palade PT (1981) Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J Physiol 312:177–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo C (1972) The time course of potassium contractures of single muscle fibres. J Physiol 223:483–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo C (1983) Pharmacological investigations of excitation-contraction coupling. Handbook of physiology, section 10, Skeletal muscle. Am Physiol Soc, Bethesda, Maryland 1983, pp 381–415

    Google Scholar 

  • Caputo C, Bolaños P (1987) Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine. J Gen Physiol 89:421–442

    Article  CAS  PubMed  Google Scholar 

  • Chandler WK, Rakowski RF, Schneider MF (1976) Effects of glycerol treatment and maintained depolarization on charge movment in skeletal muscle. J Physiol 254:285–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota G, Siri IN, Stefani E (1984) Calcium channel inactivation in frog (Rana pipiens andRana moctezuma) skeletal muscle fibres. J Physiol 354:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg RS, McCarthy RT, Milton RL (1983) Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J Physiol 341:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40:119–129

    Article  CAS  PubMed  Google Scholar 

  • Fill MD, Best PM (1986) Contracture of skinned skeletal muscle fibres induced by ionic substitution: Comparison of block by D600 and nitrendipine. Biophys J 49:13a

    Article  Google Scholar 

  • Frankenhaeuser B, Lännergren J (1967) The effect of calcium on the mechanical response of single twitch muscle fibres of Xenopus laevis. Acta Physiol Scand 69:242–254

    Article  CAS  PubMed  Google Scholar 

  • Gilly WF, Hui CS (1980a) Mechanical activation in slow and twitch skeletal muscle fibres of the frog. J Physiol 301:137–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilly WF, Hui CS (1980b) Voltage-dependent charge movement in frog slow muscle fibres. J Physiol 301:175–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibres. J Physiol 153:336–403

    Google Scholar 

  • Huerta M, Stefani E (1981) Potassium and caffeine contractures in fast and slow muscles of the chicken. J Physiol 318:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta M, Muñiz J, Stefani E (1986) Effects of external calcium on potassium contractures in tonic muscle fibres of the frog (Rana pipiens). J Physiol 376:219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui CS, Milton RL, Eisenberg RS (1984) Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Proc Natl Acad Sci USA 81:2582–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaumann AJ, Uchitel OD (1976) Reversible inhibition of potassium contractures by optical isomers of verapamil and D600 on slow muscle fibres of the frog. Naunyn-Schmiedeberg's Arch Pharmacol 292:21–27

    Article  CAS  Google Scholar 

  • Kikuchi T, Schmidt H (1983) Changes in resting and contractile properties of chicken muscles following denervation. Biomed Res 4(3):303–314

    Google Scholar 

  • Kuffler SW, Vaughan Williams EM (1953) Properties of the ‘slow’ skeletal muscle fibres of the frog. J Physiol 121:318–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lännergren J (1967) The effect of calcium on potassium contractures of single slow muscle fibres of Xenopus laevis. Acta Physiol Scand 70:16–25

    Article  Google Scholar 

  • Lehmann N, Schmidt H (1979) Contractile responses to direct stimulation of frog slow muscle fibres before and after denervation. Pflügers Arch 382:43–50

    Article  CAS  PubMed  Google Scholar 

  • Lüttgau HC (1963) The action of calcium ions on potassium contractures of single muscle fibres. J Physiol 168:679–697

    Article  PubMed Central  Google Scholar 

  • McCleskey EW (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle. J Physiol 361:231–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miledi R, Parker I, Zhu PH (1981) Calcium transients in normal and denervated slow muscle fibres of the frog. J Physiol 318:191–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miledi R, Parker I, Zhu PH (1983) Calcium transients studied under voltage-clamp control in frog twitch muscle fibres. J Physiol 340:649–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasledov GA, Zachar J, Zacharova D (1966) The ionic requirements for the development of contracture in isolated slow muscle fibres of the frog. Physiol Bohemoslov 15:293–306

    CAS  PubMed  Google Scholar 

  • Page SG (1969) Structure and some contractile properties of fast and slow muscles of the chicken. J Physiol 205:131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro G, Fitts R, Rios E (1988) Selectivity of a cation-binding membrane site essential for EC coupling in skeletal muscle. Biophys J 53:645a

    Google Scholar 

  • Palade PT, Almers W (1985) Slow calcium and potassium currents in frog skeletal muscle: their relationship and pharmacologic properties. Pflügers Arch 405:91–101

    Article  CAS  PubMed  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JA, Stefani E (1978) Inward calcium current in twitch muscle fibres of the frog. J Physiol 283:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H (1987) Effect of divalent cations on the potassium contracture of slow muscle fibres ofRana temporaria. J Membr Biol 100:215–220

    Article  CAS  Google Scholar 

  • Schmidt H, Siebler M (1985) Persistance of excitation-contraction coupling (ECC) in normal and denervated slow fibres treated with D600. Pflügers Arch 405 (Suppl):R59

    Google Scholar 

  • Schmidt H, Siebler M (1986) Effects of D600 on single slow fibres ofRana temporaria. Pflügers Arch 406 (Suppl.):R30

    Google Scholar 

  • Siebler M, Schmidt H (1987) D600 prolongs inactivation of the contractile system in frog twitch fibres. Pflügers Arch 410: 75–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 38 and 246), Bonn-Bad Godesberg. Thanks are due to B. Jung and M. Sinnwell for technical and secretarial help

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Siebler, M. & Krippeit-Drews, P. The effect of D600 on potassium contractures of slow muscle fibres ofRana temporaria . Pflugers Arch. 412, 390–396 (1988). https://doi.org/10.1007/BF01907557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907557

Key words

Navigation