Skip to main content
Log in

A strategy to scale up nitrification processes with immobilized cells of nitrosomonas europaea and nitrobacter agilis

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A scale-up strategy for a nitrification process with immobilized cells is presented. The complete description of such a process for a wide range of conditions is time consuming or even impossible. For a successful scale up of the process knowledge of the rate-limiting step is essential. To estimate the rate-limiting step a regime analysis was used. A new element in this regime analysis is a solid third phase in which cells grow non-homogeneously. Three different conditions of the nitrification process were considered: low temperature (7°C) with a low ammonia concentration (2 mM), and optimal temperature (30°C) with an ammonia concentration of 2 and 250 mM. The regime analysis proved to be a helpful tool for the understanding of the process and for establishing the rate-limiting step. A set of design rules for the different nitrification conditions was obtained from the results of this regime analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a g m2m−3 :

specific surface area of a gas bubble gas phase

a lg m2m−3 :

surface area of the liquid/gas liquid phase inter phase

a ls m2m−3 :

surface area of the solid/liquid liquid phase inter phase

a s m2m3 :

specific surface area of a gelbead solid phase

d b m:

gas bubble diameter

d p m:

biocatalyst particle diameter

E a Jmol−1 :

activation energy

g ms−2 :

gravitational acceleration

H m3 m−3 :

Henry coefficient

\(\mathbb{D}\) m2s−1 :

diffusion coefficient

k lg ms−1 :

mass transfer coefficient for gas to liquid phase

k ls ms−1 :

mass transfer coefficient for liquid to solid phase

K s molm−3 :

substrate affinity constant

m s molN (kg biomassa)−1s−1 :

maintenance coefficient

R Jmol−1 K−1 :

gas constant

S molm−3 :

substrate concentration

S sur molm−3 :

substrate concentration at surface of the biocatalyst

S bulk mol m−3 :

substrate concentration in bulk phase

Y kgmol−1 :

yield coefficient for biomass on substrate

X kgm−3 :

biomass concentration

Z dimensionless:

temperature effected parameter value

z t8 dimensionless:

temperature independent parameter value

ɛ g m3gas m−3 :

gas hold up liquid

ɛ s m3 solid m−3 liquid:

solid phase hold up

η i dimensionless:

effectiveness factor

λ i m2Smol−1 :

molar ionic conductivity

τ s:

characteristic time

τ g s:

τ for growth

τ oex s:

τ for oxygen exhaustion of gas bubbles

τ olg s:

τ for oxygen transfer from gas to liquid phase

τ liqret s:

τ for the liquid retention time

τ gasret s:

τ for the gas retention time

τ ils s:

τ for substrate (i) transfer from liquid to solid phase

τ mix s:

τ for mixing of liquid phase

τ circ s:

τ for liquid circulation in air-lift loop reactor

τ ikin s:

τ for substrate (i) conversion

τ iconv s:

τ for substrate (i) conversion in the biocatalyst

μ max s−1 :

maximum specific growth rate

ω Nsm−2 :

dynamic viscosity

ρ l kgm−3 :

density of liquid phase

ρ s kgm−3 :

density of solid phase

i:

NH4, NO 2 , NO3 and Ns, Nb for N. europaea, N. agilis, respectively.

References

  1. Boon, B.; Laudelout, H.: Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J. 85 (1962) 440–447

    Google Scholar 

  2. Bortone, G.; Piccinini, S.: Nitrification and denitrification in activated-sludge plants for pig slurry and wastewater from cheese diaries. Bioresource Technol. 37 (1991) 243–252

    Google Scholar 

  3. Brian, P. T. L; Hales, H. B.: Effects of transpiration and changing diameter on heat and mass transfer to spheres. A.I.Ch.E. J. 15 (1969) 419–425

    Google Scholar 

  4. Chisti, M. Y.: Airlift bioreactors. England, Essex: Elsevier 1989

    Google Scholar 

  5. Gooijer, C. D. de; Wijffels, R. H.; Tramper, J.: Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 1. dynamic modeling. Biotechnol. Bioeng. 38 (1991) 224–231

    Google Scholar 

  6. Gujer, W.; Boller, M.: A mathematical model for rotating biological contactors. In: Proc. of the technical advances in bioreactors conference, Nice, pp 69–89. Paris, CFRP-AGHTM 1989

    Google Scholar 

  7. Gullicks, H. A.; Cleasby, J. L.: Cold-climate nitrifying biofilters: design and operation considerations. J. WPCF 62 (1990) 50–57

    Google Scholar 

  8. Heijnen, J. J.; Riet, K. van't: Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chem. Eng. J. 28 (1984) B21-B42

    Google Scholar 

  9. Heijnen, J. J.; Roels, J. A.: A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol. Bioeng. 23 (1981) 739–763

    Google Scholar 

  10. Heijnen, J. J.; Mulder, A.; Weltevrede, R.; Hols, J.; Leeuwen, H. L. J. M. van: Large scale anaerobic-aerobic treatment of complex industrial waste water using biofilm reactors. Water Sci. Technol. 23 (1991) 1427–1436

    Google Scholar 

  11. Helder, W.; Vries, R. T. P. de: Estuarine nitrite maxima and nitrifying bacteria (Ems-Dollard estuary). Netherlands J. Sea Res. (in English) 17 (1983) 1–18

    Google Scholar 

  12. Hunik, J. H.; Bos, C. G.; Hoogen, M. P. van den; Gooijer, C. D. de; Tramper, J.: Validation of a dynamic model for substrate conversion and growth of Nitrosomonas europaea and Nitrobacter agilis cells immobilized in κ-carrageenan beads. Biotechnol. Bioeng. (accepted for publication)

  13. Janssen, L. P. B. M.; Warmoeskerken, M. M. C. G.: Fysisch technologisch bij-de-hand boek. Delft, The Netherlands: DUM 1982

    Google Scholar 

  14. Knowles, G.; Downing, A. L.; Barrett, M. J.: Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of electronic computer. J. Gen. Microbiol. 38 (1965) 263–278

    Google Scholar 

  15. Laudelout, H.; Tichelen, L. van: Kinetics of the nitrite oxidation by Nitrobacter winogradskyi. J. Bact. 79 (1960) 39–42

    Google Scholar 

  16. Laudelout, H.; Lambert, R.; Fripiat, J. L.; Pham, M. L.: Effet de la température sur la vitesse d'oxydation de l'ammonium en nitrate par des cultures mixtes de nitrifiants. Ann. Microbiol. (Inst Pasteur) 125B (1974) 75–84

    Google Scholar 

  17. Laudelout, H.; Lambert, R.; Pham, M. L.: Influence du pH et la pression partielle d'oxygène sur la nitrification. Ann Microbiol (Inst Pasteur) 127 A (1976) 367–382

    Google Scholar 

  18. Leenen, E. J. T. M.; Englund, G.; Tramper, J.; Wijffels, R. H.: Effluent treatment at low temperatures using artificially immobilized nitrifying bacteria, In: Proc. int. conf. on Sewage into 2000, Part 2: Wastewater treatment, pp. 339–350. Amsterdam, IAWPRC/EWPCA/NVA 1992

    Google Scholar 

  19. Moser, A.: Bioprocess technology: kinetics and reactors. New York, USA: Springer 1988

    Google Scholar 

  20. Murphy, K. L.; Sutton, P. M.; Wilson, R. W.; Jank, B. E.: Nitrogen control: design considerations for supported growth systems. J. WPCF 49 (1977) 549–557

    Google Scholar 

  21. Neumann, J. S.: Electrochemical systems. Englewood Cliffs, NJ: Prentice-Hall 1973

    Google Scholar 

  22. Ødegaard, H.; Paulsrud, B.; Bilstad, T.; Pettersen, J. E.: Norwegian strategies in the treatment of municipal wastewater towards the reduction of nutrient discharges to the North Sea. In: North Sea pollution, technical strategies for improvement, pp. 355–366. Amsterdam, The Netherlands: IAWPRC/EWPCA/NVA 1990

    Google Scholar 

  23. Okey, R. W.; Albertson, O. E.: Diffusion's role in regulating rate and masking temperature effects in fixed-film nitrification. J. WPCF 61 (1989) 500–509

    Google Scholar 

  24. Painter, H. A.: Nitrification in the treatment of sewage and waste-waters. In: Prosser, J. I. (Ed.): Nitrification: Special publications of the society for general microbiology, vol. 20, pp. 185–211. Oxford, UK: IRL Press 1986

    Google Scholar 

  25. Randall, C. W.; Buth, D.: Nitrite build-up in activated sludge Resulting from temperature effects. J. WPCF 56 (1984) 1039–1044

    Google Scholar 

  26. Riet, K. van't; Tramper, J.: Basic bioreactor design. New York, USA: Marcel Dekker Inc. 1991

    Google Scholar 

  27. Roels, J. A.: Energetics and kinetics in biotechnology. Amsterdam, The Netherlands: Elsevier Biomedical Press 1983

    Google Scholar 

  28. Schouten, G. H.; Guit, R. P.; Zieleman, G. J.; Luyben, K. Ch. A. M.; Kossen, N. W. F.: A comparative study of a fluidized bed reactor and a gas lift loop reactor for the IBE process: Part 1. reactor design and scale down approach. J. Chem. Technol. Biotechnol. 36 (1986) 335–343

    Google Scholar 

  29. St-Arnaud, S.; Bisaillon, J.-G.; Beaudet, R.: Microbiological aspects of ammonia oxidation of swine waste. Can. J. Microbiol. 37 (1991) 918–923

    Google Scholar 

  30. Stratton, F. E.; McCarty, P. L.: Prediction of nitrification on the dissolved oxygen balance of streams. Current Res. 1 (1967) 405–410

    Google Scholar 

  31. Sweere, A. P. J.; Luyben, K. Ch. A. M.; Kossen, N. W. F.: Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microbiol Technol. 9 (1987) 386–398

    Google Scholar 

  32. Verlaan, P.: Modelling and characterization of an airlift-loop reactor, Ph.D. Thesis, Wageningen Agricultural University, The Netherlands 1987

    Google Scholar 

  33. Wanner, O.; Gujer, W.: A multispecies biofilm model, Biotechnol. Bioeng. 28 (1984) 314–328

    Google Scholar 

  34. Weast, R. C.; Astle, M. J. (Eds.): CRC handbook of chemistry and physics, 6oth edition, pp. f51. Boca Raton, FL: CRC Press Inc. 1980

    Google Scholar 

  35. Wijffels, R. H.; Hunik, J. H.; Gooijer, C. D. de; Tramper, J.: Nitrification with immobilized bacteria in airlift loop reactors; modelling and application. In: Christiansen, C.; Munck, L.; Villadsen, J. (Eds): Proc. of the 5th European congress on biotechnology, pp. 392–395. Copenhagen, Denmark 1990

  36. Wijffels, R. H.; Gooijer, C. D. de; Kortekaas, S.; Tramper, J.: Growth and substrate consumption of Nitrobacter agilis immobilized in carrageenan: Part 2. Model evaluation. Biotechnol. Bioeng. 38 (1991) 232–240

    Google Scholar 

  37. Wijffels, R. H.; Englund, G.; Hunik, J. H.; Leenen, E. T. J. M.; Bakketun, Å.; Günther, A.; Obón de Castro, J. M.; Tramper, J.: Effects of diffusion limitation on immobilized nitryfying organisms at low temperature, (submitted)

  38. Williamson, K.; McCarty, P. L.: Verification studies of the biofilm model for bacteria substrate utilization. J. WPCF 48 (1976) 281–296

    Google Scholar 

  39. Wise, D. L.; Houghton, G.: The diffusion of ten slightly soluble gases in water at 10–60°C. Chem. Eng. Sci. 21 (1966) 999–1010

    Google Scholar 

  40. Zevenboom, W.; Rademaker, M.; Colijn, F.: Exceptional algal blooms in dutch north sea waters. In: North Sea pollution, technical strategies for improvement, pp. 473–486. IAWPRC/EWPCA/NVA, Amsterdam, The Netherlands 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by the European Community in the programme Science and Technology for Environmental Protection (ref. STEP-CT91-0123).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunik, J.H., Tramper, J. & Wijffels, R.H. A strategy to scale up nitrification processes with immobilized cells of nitrosomonas europaea and nitrobacter agilis. Bioprocess Engineering 11, 73–82 (1994). https://doi.org/10.1007/BF00389563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389563

Keywords

Navigation