Skip to main content
Log in

Feasibility of using water-immiscible organic solvents in biological waste-gas treatment

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In order to conclude about the feasibility of using water-immiscible organic solvents in biological waste-gas treatment, a theoretical study was done in which different types of organic-solvent-containing systems are compared with systems where the pollutant is transferred directly to the water phase. For each system the total equipment volume needed to remove 99% of a pollutant from a waste-gas stream is calculated. Three different pollutants with a different solubility in water are considered: Hexane (m gw =71), dichloromethane (m gw =0.1) and acetone (m gw =0.0016), withm gw the partition coefficient (kg/m3 gas/kg/m3 water) of the pollutant between the gas and the water phase. From the results it is concluded that the use of organic solvents is only advantageous in case the specific area for mass transfer between solvent and water is large enough to compensate for the additional transport resistance introduced by the solvent, and secondly if the solvent shows a sufficiently high affinity for the pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

specific area for mass transfer [m−1]

a p :

packing material specific area [m−1]

C :

pollutant concentration [kg m−3]

D :

pollutant diffusivity [m2 s−1]

d :

stirrer diameter [m]

p :

bubble, droplet or packing material diameter [m]

g :

acceleration of the gravity [m.s−2]

Gr :

Grashof number:g * d 3p * Δρ *(θ/μ)2/θ [dimensionless]

H :

height [m]

K :

overall mass-transfer coefficient [m.s−1]

k :

partial mass-transfer coefficient [m.s−1]

m gw :

partition coefficient of the pollutant in the system gas/water [kg/m3 gas/kg/m3 water]

m gs :

partition coefficient of the pollutant in the system gas/solvent [kg/m3 gas /kg/m3 solvent]

m sw :

partition coefficient of the pollutant in the system solvent/water:m gw /m gs [kg/m3 solvent /kg/m3 water]

P :

power input per unit mass of fluid [W.kg−1]

Q :

flow [m3.s−1]

Re :

Reynolds number:ρ * v * d p /μ [dimensionless]

Sc :

Schmidt number:μ/ρ *D [dimensionless]

Sh :

Sherwood number:k * d p /D [dimensionless]

T :

tank diameter [m]

t :

time [s]

v bs :

bubble rising velocity [m.s−1]

v s :

superficial velocity [m.s−1]

V :

volume [m3]

φ :

void fraction [dimensionless]

ε :

hold-up [dimensionless]

ρ :

density [kg.m−3]

μ :

dynamic viscosity [kg.m−1s−1]

δ :

film thickness [m]

σ :

interfacial tension [kg.s−2]

Δρ :

density difference [kg.m−3]

τ :

residence time [s]

c:

coalescence layer

to the equipment:

from the equipment

g:

gas phase

s:

solvent phase

w:

water phase

References

  1. Kok, H.J.G.: Bioscrubbing of air contaminated with high concentrations of hydrocarbons. In: Dragt, A.J.; Van Ham, J. (Eds.): Biotechniques for Air Pollution Abatement and Odour Control Policies, vol. 51, pp. 77–82. Amsterdam: Elsevier 1992

    Google Scholar 

  2. Ottengraf, S.P. P.;Diks, R.M.M.: Process technology of biotechniques. In: Dragt, A. J.; Van Ham, J. (Eds.): Biotechniques for Air Pollution Abatement and Odour Control Policies, vol. 51, PP 17–31. Amsterdam: Elsevier 1992

    Google Scholar 

  3. Ottengraf, S.P.P.: Biological systems for waste gas elimination. Tibtech 5 (1987) 132–136

    Google Scholar 

  4. Laane, C.;Tramper, J.;Lilly, M.D.: Biocatalysis in organic media, Studies in organic chemistry, vol. 29. Amsterdam: Elsevier 1987

    Google Scholar 

  5. Tramper, J.;Vermuë, M.H.;Beeftink, H.H.;Von Stockar, U.: Biocatalysis in non-conventional media. Progress in biotechnology, vol. 8. Amsterdam: Elsevier 1992

    Google Scholar 

  6. Ju, L.K.;Lee, J.F.;Armiger, W.B.: Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol. Prog. 7 (1991) 323–329

    Google Scholar 

  7. Junker, B.H.;Hatton, T.A.;Wang, D.I.C.: Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems: I. Experimental observations. Biotechnol. Bioeng. 35 (1990) 578–585

    Google Scholar 

  8. Rols, J.L.;Condoret, J.S.;Fonade, C.;Goma, G.: Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng. 35 (1990) 427–435

    Google Scholar 

  9. Chisti, M.Y.: Airlift bioreactors. London: Elsevier 1989

    Google Scholar 

  10. Verlaan, P.: Modelling and characterization of an airlift-loop bioreactor. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1987

    Google Scholar 

  11. Tramper, J.;Wolters, I.;Verlaan, P.: The liquid-impelled loop reactor: a new type of density-difference-mixed bioreactor. In: Laane, C.; Tramper, J.; Lilly, M. D. (Eds.): Biocatalysis in organic media, Studies in organic chemistry, vol. 29, pp. 311–316. Amsterdam: Elsevier 1987

    Google Scholar 

  12. Brink, L.E.S.;Tramper, J.: Facilitated mass transfer in a packed-bed immobilized-cell reactor by using an organic solvent as substrate reservoir. J. Chem. Tech. Biotechnol. 37 (1987) 21–44

    Google Scholar 

  13. Treybal, R.E.: Liquid extraction, 2nd edition. New York: McGraw-Hill 1963

    Google Scholar 

  14. Bello, R.A.;Robinson, C.W.;Moo-Young, M.: Gas hold-up and overall volumetric oxygen transfer coefficient in airlift contactors. Biotechnol. Bioeng. 27 (1985) 369–381

    Google Scholar 

  15. Van't Riet, K.;Tramper, J.: Basic bioreactor design. New York: Marcel Dekker 1991

    Google Scholar 

  16. Treybal, R.E.: Mass transfer operations, 2nd edition. New York: Mc-Graw-Hill 1968

    Google Scholar 

  17. Onda, K.;Takeuchi, H.;Okumoto, Y.: Mass-transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Japan 1 (1968) 56–62

    Google Scholar 

  18. Perry, R.H.;Chilton, C.H.: Chemical engineers' handbook, 5th edition. New York: McGraw-Hill 1973

    Google Scholar 

  19. Van Sonsbeek, H.M.;Van Der Tuin, S.P.;Tramper, J.: Mixing in liquid-impelled loop reactors. Biotechnol. Bioeng. 39 (1992) 707–716

    Google Scholar 

  20. Van Sonsbeek, H.M.;Verdurmen, R.E.M.;Verlaan, P.;Tramper, J.: Hydrodynamic model for liquid-impelled loop reactors. Biotechnol. Bioeng. 36 (1990) 940–946

    Google Scholar 

  21. Janssen, L.P.B.M.;Warmoeskerken, M.M.C.G.: Transport phenomena data companion. London: Edward Arnold Ltd and Delft: Delftse Uitgevers Maatschappij B.V. 1987

    Google Scholar 

  22. Brian, P.L.T.;Hales, H.B.: Effects of transpiration and changing diameter on heat and mass transfer to spheres. A.I.Ch.E. 15 (1969) 419–425

    Google Scholar 

  23. Zuiderweg, F.J.: Fysische scheidingsmethoden, deel 2. Delft: Technische Universiteit Delft 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Junta Nacional de Investigação Científica e Tecnológica, Lisbon, Portugal. The authors wish to thank W.A. Beverloo for his comments on the manuscript and for the valuable discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesário, M.T., Beeftink, H.H. & Tramper, J. Feasibility of using water-immiscible organic solvents in biological waste-gas treatment. Bioprocess Engineering 12, 55–63 (1995). https://doi.org/10.1007/BF01112994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01112994

Keywords

Navigation