Skip to main content
Log in

Mixing-models applied to industrial batch bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mixing models for bioreactors on the basis of the tanks-in-series concept are presented and a suitable parameter-estimation method is introduced. The Monte-Carlo-optimization procedure with the inhomogeneity-curve included in the objective function is used. Results of the parameter optimization procedure are given for stirred-tank-bioreactors equipped with one and three Rushton turbines under aerated conditions. The model designed for the stirredtank with three Rushton turbines is capable to describe the mixing properties, while in case of the stirred-tank with one Rushton turbine the simulated radial circulation time does not correlate with the measured one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 00...a XY :

coefficients in Eq. (9)

d i m:

stirrer diameter

D m:

tank diameter

E :

relative error

F AX m3/s:

axial liquid flow rate

F G m3/s:

aeration flow rate

F RAD m3/s:

radial liquid flow rate

g m/s2 :

acceleration of gravity

h l m:

height of fluid in the tank

i s(t):

simulated inhomogeneity-curve

i m(t):

measured inhomogeneity-curve

k :

number of sensors

n 1/s:

stirrer revolutions

N :

number of tanks in the tanks-of-series-cascade

p :

number of measured time intervalls

t s:

time

t c.AX s:

axial circulation time

t c,RAD s:

radial circulation time

T i °C:

temperature of sensors

T °C:

temperature at the end of the experiment

T 0 °C:

temperature before pulse injection

V tot m3 :

total liquid volume

V C m3 :

liquid volume of circulation cascade, additional index specifications describe the cascade elements (Figs.1 and 2)

V M m3 :

liquid volume of well mixed stirrer compartment

w 0 m/s:

superficial gas velocity

X, Y :

exponents in eq. (9)

ρ kg/m3 :

density

η :

Pas dynamic viscosity

ν m2/s:

kinematic viscosity

τ s:

time constant (time for 63,2% of T ) of the signal

\(Fr_s = n\sqrt {d_i /g} \) :

stirrer Froude number

\(Fr_A = \frac{{w_0 }}{{\sqrt {g \cdot h_i } }} = \frac{{F_G }}{{V_{tot} }} \cdot \sqrt {\frac{{h_i }}{g}} \) :

aeration Froude number

References

  1. Dankwerts, P. V.: Continuous flow systems. Chem. Eng. Sci., 2 (1953) 1–13

    Google Scholar 

  2. Van de Vusse, J. G.: A new model for the stirred tank reactor. Chem. Eng. Sci., 17 (1962) 507–521

    Google Scholar 

  3. Sheppard, C. W.: Basic principles of the tracer method. New York: John Wiley and Sons 1962

    Google Scholar 

  4. Aris, R.: Compartmental analysis and the theory of residence time distribution in: Intracellular Transport. New York: Academic Press 1966

    Google Scholar 

  5. Resugno, A.; Segre, G.: Drug and tracer kinetics. London: Blaisdell Pub. Co. 1966

    Google Scholar 

  6. Sinclair, C. G.; Brown, D. E.: Effect of incomplete mixing on the analysis of the static behaviour of continuous cultures. Biotechnol. Bioeng. 12 (1970) 1001–1017

    PubMed  Google Scholar 

  7. Wen, C. Y.; Fan, L. T.: Models for flow systems and chemical reactors. New York: Marcel Dekker Inc. 1975

    Google Scholar 

  8. Levenspiel, O.: Chemical Reaction Engineering. New York: John Wiley and Sons 1972

    Google Scholar 

  9. Khang, S. J.; Levenspiel, O.: New scale up and design method for stirrer agitated batch mixing vessels. Chem. Eng. Sci. 31 (1976) 569–577

    Google Scholar 

  10. Levenspiel, O.: Chemical Reactor Omnibook. Corvallis OR: OSU Book Stores Inc. 1979

    Google Scholar 

  11. Oosterhuis, N. M. G.; Kossen, N. W. F.: Modelling and scaling-up of bioreactors. in: Brauer, H.: Fundamentals of biochemical engineering, Biotechnology (Vol. 2), Weinheim, Deerfield Beach FL VCH (1985) 571–605

    Google Scholar 

  12. Singh, V.; Hensler, W.; Fuchs R.: Online determination of mixing parameters in fermentors using pH transient. in: Bioreactor Fluid Dynamics, Paper 18, Cambridge (1986) 231–256

  13. Singh, V.; Fuchs, R.; Constantinides, A.: A new method for fermentor scale-up incorporating both mixing and mass transfer effects — I. Theoretical basis. in: Ho, C. S.; Oldshue, J. Y.; (Eds.): Biotechnology Processes, Scale-up and Mixing. New York: AIChE Publ. (1987) 200–214

    Google Scholar 

  14. Singh, V.; Fuchs, R.; Constantinides, A.: Use of mass transfer and mixing correlation for the modelling of oxygen transfer in stirred tank fermentors. in: Bioreactor Fluid Dynamics, Proc. 2nd Int. Conf. Cranfield, UK (1988) 95–115

  15. Bader, F. G.: Modelling mass transfer and agitator performance in multiturbine fermentors. Biotechnol. Bioeng. 30 (1987) 37–51

    Google Scholar 

  16. Bader, F. G.: Improvements in multiturbine mass transfer models. in: Ho C. S., Oldshue, J. Y., (Eds.): Biotechnology Processes, Scale-up and Mixing. New York: AIChE Publ. (1987) 96–106

    Google Scholar 

  17. Bajpai, R. K.; Sohn, P. U.: Stage models for mixing in stirred bioreactors. in: Ho C. S., Oldshue, J. Y., (Eds.): Biotechnology Processes, Scale-up and Mixing. New York, AIChE Publ. (1987) 13–21

    Google Scholar 

  18. Moser, A.: Bioprocess Technology. New York, Wien: Springer Verlag (1988)

    Google Scholar 

  19. Heinzle, E.; Kaufmann, T.; Griot, M.: Modelling of kinetics, mass transfer and mixing. in: Fish, N. M.; Fox, R. I.; Thornhill, N. F. (Eds.): Computer application in fermentation technology. New York, London: Elsevier Applied Science (1989) 105–109

    Google Scholar 

  20. Jury, W.: Mixing in bioreactors. Ph.D. Thesis, Institute for Biotechnology, Graz University of Technology 1989

  21. Ragot, F.; Reuss, M.: A multi-phase compartment model for stirred bioreactors incorporating mass transfer and mixing. 2nd Int. Symp. on Biochemical engineering, Stuttgart. 1990

  22. Henzler, H. J.; Obernosterer, G.: Effect of mixing behaviour on gas-liquid mass transfer in highly viscous stirred non-Newtonian liquids. Chem. Eng. Technol. 14 (1991) 1–10

    Google Scholar 

  23. Reuss, M.; Bajpai, R.: Stirred tank models. in: Rehm, H. J., Reed G., Pühler, A., Stadler, P. (Eds.): Biotechnology. Schügerl K. (Volume Ed.): Measuring, modelling and control. Vol. 4 Weinheim, New York, Basel, Cambridge: VCH Verlagsgesellschaft 1991

    Google Scholar 

  24. Dankwerts, P. V.: The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci., 8 (1958) 93–102

    Google Scholar 

  25. Schneider, G.; Purgstaller, A.; Somitsch, H.; Moser, A.: Approach to mixing in bioreactors — experimental verification, methodology and model bioreactor. in: Chmiel, H. et al. (Eds.): Biochemical Engineering. Stuttgart, New York: G. Fischer Verlag (1987) 428–430

    Google Scholar 

  26. Mayr, B.; Horvat, P.; Moser, A.: Engineering approach to mixing quantification in bioreactors. Biopr. Eng. 8 (1992) 137–143

    Google Scholar 

  27. Moser, A.; Mayr, B.; Jury, W.; Steiner, W.; Horvat, P.: Mathematical models for mixing in deep jet bioreactor: Analysis. Biopr. Eng. 7 (1991) 171–176

    Google Scholar 

  28. Moser, A.; Mayr, B.; Jury, W.; Steiner, W.; Horvat, P.: Mathematical models for mixing in deep jet bioreactor: Calculation of parameters. Biopr. Eng. 7 (1991) 177–182

    Google Scholar 

  29. Jury, W.; Schneider, G.; Moser, A.: Modelling approach to industrial bioreactors. in: 6th European Conference on Mixing, Pavia, Italy, organized by AIDIC (1988) 451–456

    Google Scholar 

  30. Cutter, L. A.: Flow and turbulence in a stirred tank. AIChE J. 12 (1966) 35–45

    Google Scholar 

  31. Günkel, A. A.; Weber, M. E.: Flow phenomena in stirred tanks. AIChE J. 21 (1975) 931–949

    Google Scholar 

  32. Nagata, S.: Mixing principles and applications. New York, John Wiley & Sons 1975

    Google Scholar 

  33. Brauer, H.: Power consumption in aerated stirred tank reactor systems. Adv. Biochem. Eng., 13 (1979) 87–119

    Google Scholar 

  34. Moeckel, H. O.: Die Verteilung der örtlichen Energiedissipation in einem Rührwerk. Chem. Tech. 32 (1980) 127–129

    Google Scholar 

  35. Okamoto, Y.; Nishikawa, M.; Hashimoto, K.: Energy dissipation rate distribution in mixing vessels and its effects on liquid-liquid dispersion and solid-liquid mass transfer. Chem. Eng. 21 (1981) 88–94

    Google Scholar 

  36. Placek, I.; Tavlarides, L. L.; Smith, G. W.; Fort I.: Turbulent flow in stirred tanks. Part II: A two scale model of turbulence. AIChE J. 32 (1986) 1771–1786

    Google Scholar 

  37. Laufhütte, H. D.; Mersmann, A.: Die lokale Energiedissipation im turbulent gerührten Fluid und ihre Bedeutung für die verfahrenstechnische Auslegung von Rührwerken. CIT, 57 (1986) 1104–1105

    Google Scholar 

  38. Fehlberg, E.: Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing, 6 (1970) 61–71

    Google Scholar 

  39. Burden, R. L.; Faires, J. D.: Numerical Analysis. Boston: PWS Publishers 1985

    Google Scholar 

  40. Dennis, J. E.: Non-linear least squares and equations. in: Jacobs (Ed): The state of art in numerical analysis. Proceedings of the conference on the state of art in numerical analysis London, New York, San Francisco: Academic Press 1977

    Google Scholar 

  41. Walsh, G. R.: Methods of optimization. London, New York, Sydney, Toronto: John Wiley and Sons 1975

    Google Scholar 

  42. Späth, H.: Algorithmen für multivariante Ausgleichsmodelle. München, Wien: R. Oldenbourg Verlag 1974

    Google Scholar 

  43. Knuth, D. E.: Seminumerical Algorithms. in: The art of computer programming, Addison Wesley Publishing Company 1982

  44. Manning, S. A.; Jameson, G. L.: A study of ventilated gas cavities on discturbine blades. in: 7th European Conference on Mixing proceedings volume I, Brugge: Royal Flemish Society of Engineers (1991) 225–231

    Google Scholar 

  45. Smith, J. M.: Simple performance correlations for agitated vessels. in: 7th European Conference on Mixing, Proceedings Volume I, Brugge: Royal Flemish Society of Engineers (1991) 233–242

    Google Scholar 

  46. Patterson, G. K.: Measurements and modelling of flow in gas sparged, agitated vessels. in: 7th European Conference on Mixing. Proceedings Volume I, Brugge: Royal Flemish Society of Engineers (1991) 209–215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayr, B., Horvat, P., Nagy, E. et al. Mixing-models applied to industrial batch bioreactors. Bioprocess Engineering 9, 1–12 (1993). https://doi.org/10.1007/BF00389534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389534

Keywords

Navigation