Skip to main content
Log in

The effect of molecular topology on π-molecular-orbital energies

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Three models for constructing topologically related pairs of molecular isomers are discussed at length. The topological-effect-on-molecular-orbitals (TEMO) theorem is presented in detail and illustrated with experimental data; this theorem demonstrates that molecular topology imposes constraints in the form of general interlacing rules on the MO energy patterns of topologically related molecules. Further, non-empirical SCF MO calculations have been performed for topologically related o- and p-divinylbenzenes, difluorobenzenes, benzoquinones, and benzoquinodimethanes in standard and optimized geometries using various basis sets. In most cases, the SCF π-MO eigenvalue patterns of topological related isomers are in complete agreement with the TEMO theorem, thus demonstrating the dominant influence of topology on the π-MO energies. A modified version of the generalized perturbationalvariational Rayleigh-Ritz (PV-RR) procedure is described which is used to study the occasional observed deviations from the TEMO predictions; this procedure had been combined with the concept of critical λ (i.e. the threshold value of the perturbation parameter λ at which the TEMO order of a pair of MO eigenvalues starts to invert), thus enabling us to analyze in quantitative detail the physical factors which compete with molecular topology in conditioning the ab initio MO energy patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prelog, V.: J. Mol. Catalysis 1, 159 (1975/76)

    Google Scholar 

  2. Polansky, O. E. in: Application of graph theory in chemistry, Chap. 1, Tyutyulkov, N., Bonchev, D., eds. Sofia: Science and Arts Publisher, in press

  3. Polansky, O. E.: J. Mol. Struct. 113, 281 (1984)

    Google Scholar 

  4. Polansky, O. E., Zander, M.: J. Mol. Struct. 84, 361 (1982)

    Google Scholar 

  5. Polansky, O. E., Zander, M., Motoc, I.: Z. Naturforsch. 38a, 196 (1983); Fabian, W., Motoc, I., Polansky, O. E.: Z. Naturforsch. 38a, 916 (1983)

    Google Scholar 

  6. Motoc, I., Silverman, J. N., Polansky, O. E.: Phys. Rev. A28, 3673 (1983)

    Google Scholar 

  7. Motoc, I., Silverman, J. N., Polansky, O. E.: Chem. Phys. Lett. 103, 285 (1984)

    Google Scholar 

  8. Silverman, J. N., Sobouti, Y.: Astron. Astrophys. 62, 355 (1978);

    Google Scholar 

  9. Silverman, J. N.: J. Phys. A 16, 3471 (1983);

    Google Scholar 

  10. Silverman, J. N., Pakiari, A. H.: in preparation

  11. Graovac, A., Gutman, I., Polansky, O. E.: Mh. Chem. 115, 1 (1984);

    Google Scholar 

  12. Graovac, A., Polansky, O. E.: Croat. Chim. Acta, in press

  13. Ruedenberg, K.: J. Chem. Phys. 22 1878 (1954); 29, 1232 (1958); 34, 1884 (1961)

    Google Scholar 

  14. Weltin, E., Weber, J. P., Heilbronner, E.: Theoret. Chim. Acta (Berl.) 2, 114 (1964), and references cited therein

    Google Scholar 

  15. Graovac, A., Gutman, I., Trinajstic, N.: Topological approach to the chemistry of conjugated molecules, Lecture notes in chemistry, Vol. 4, Berlin: Springer Verlag 1977

    Google Scholar 

  16. Pancir, J.: Coll. Czech. Chem. Comm. 45, 2452, 2463 (1980)

    Google Scholar 

  17. Silverman, J. N.: Phys. Rev. A 23, 441 (1981), and references cited therein

    Google Scholar 

  18. Two independent proofs of (7) are offered: Graovac, A., Gutman, I., Polansky, O. E.: in preparation; Gutman, I., Graovac, A., Polansky, O. E.: in preparation

  19. Potzinger, P., Landers, A.: unpublished results

  20. Schmidt, W.: J. Chem. Phys. 66, 828 (1977)

    Google Scholar 

  21. Galasso, V., Colonna, F. P., Distefano, G.: J. Electron. Spectrosc. Relat. Phenom. 10, 227 (1977)

    Google Scholar 

  22. Motoc, I., Silverman, J. N., Polansky, O. E.: Phys. Rev. A to be submitted

  23. Dupuis, M., Rys, J., King, H. F.: QCPE Program Nos. 401/403, Indiana Univ., Bloomington

  24. Hehre, W. J., Stewart, R. F., Pople, J. A.: J. Chem. Phys. 51, 2657 (1969);

    Google Scholar 

  25. Dunning Jr., T. H., Hay, P. J., in: Modern theoretical chemistry. Vol. 3. Methods of electronic structure theory, p. 1, Schaefer III, H. F. ed. New York: Plenum Press 1977;

    Google Scholar 

  26. Ditchfield, R., Hehre, W. J., Pople, J. A.: J. Chem. Phys. 54, 724 (1971);

    Google Scholar 

  27. Tatewaki, H., Huzinaga, S.: J. Comp. Chem. 1, 205 (1980)

    Google Scholar 

  28. Löwdin, P. O.: J. Chem. Phys. 18, 365 (1950)

    Google Scholar 

  29. Sudhindra, B. S., Olbrich, G., Silverman, J. N.: in preparation

  30. Silverman, J. N.: Phys. Rev. A 28, 498 (1983), and references cited therein

    Google Scholar 

  31. Tables of interatomic distances and configuration in molecules and ions. London: The Chemical Society, 1958

  32. See, for example, Hirschfelder, J. O., Brown, W. B., Epstein, S. T.: Adv. Quantum Chem. 1, 255 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Günther Wilke on the occasion of his 60th birthday

Part 10 of the TEMO series; for Part 9, see Ref. [9b].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motoc, I., Silverman, J.N., Polansky, O.E. et al. The effect of molecular topology on π-molecular-orbital energies. Theoret. Chim. Acta 67, 63–89 (1985). https://doi.org/10.1007/BF00547896

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547896

Key words

Navigation