Skip to main content
Log in

A theoretical study of structure and bonding of chlorinated silaethanes and 1,3-disilapropanes

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Results of extended basis set treatments on the SCF level of theory are reported for all C-chlorinated, Si-chlorinated, symmetrically C- and Si-chlorinated silaethanes, and some chlorinated 1,3-disilapropanes. These molecules are considered as models for carbosilane compounds in general. Computed geometric structure constants are in good agreement with experiment as far as a comparison is possible. The stability and reactivity of molecules considered is discussed by means of computed bond distances, isodesmic reaction energies, and especially by results of population analysis. Si-chlorination yields a stabilization of the Si-C skeleton in carbosilanes whereas C-chlorination reduces this stability to a large extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Fritz G (1958) Angew Chem 70:701

    Google Scholar 

  2. Fritz G, Matern E (1986) Carbosilanes: syntheses and reactions. Springer, Berlin Heidelberg New York; Fritz G (1987) Angew Chem 99:1150

    Google Scholar 

  3. Walsh R (1981) Acc Chem Res 14:246 Walsh R (1983) J Chem Soc, Faraday Trans. I 79:2233

    Google Scholar 

  4. Jankowski K, Becherer R, Scharf P, Schiffer H, Ahlrichs R (1985) J Chem Phys 82:1413; Ahlrichs R, Scharf P, Jankowski K (1985) Chem Phys 98:381; Becherer R, Ahlrichs R (1985) Chem Phys 99:389

    Google Scholar 

  5. Schlegel HB (1984) J Phys Chem 88:6254; Ho P, Coltrin ME, Binkley JS, Melius CF (1985) J Phys Chem 89:4647

    Google Scholar 

  6. Ahlrichs R, Schiffer H (1985) J Am Chem Soc 107:6494; Ahlrichs R, Ehrhardt C, Lakenbrink M, Schunk S, Schnöckel H (1986) J Am Chem Soc 108:3596; Ehrhardt C, Ahlrichs R (1986) Chem Phys 108:417; Ehrhardt C, Ahlrichs R (1986) Chem Phys 108:429; Ahlrichs R, Ehrhardt C (1986) Chem Phys 107:1

    Google Scholar 

  7. Ahlrichs R, Böhm H-J, Ehrhardt C, Scharf P, Schiffer H, Lischka H, Schindler M (1985) J Comput Chem 6:200

    Google Scholar 

  8. Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quant Chem, Quant Chem Symp 15:91

    Google Scholar 

  9. Schlegel HB (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry, part I. Wiley, Chichester

    Google Scholar 

  10. Huzinaga S (1965) J Chem Phys 42:1293; Huzinga S (1971) Approximate atomic functions I and II. Division of Theoretical Chemistry, Department of Chemistry, The University of Alberta

  11. Schiffer H, to be published; see also Schiffer H (1987) Ph.D. Thesis, University of Karlsruhe

  12. Davidson ER (1967) J Chem Phys 46:3320; Roby KR (1974) Mol Phys 27:81; Heinzmann R, Ahlrichs R (1976) Theor Chim Acta 42:33; Cruickshank DWJ, Avramides EJ (1982) Phil Trans R Soc Lond A304:533; Ehrardt C, Ahlrichs R (1985) Theor Chim Acta 68:231

    Google Scholar 

  13. Wong M, Ozier I, Meerts WL (1983) J Mol Spectrosc 102:89

    Google Scholar 

  14. Schwendeman RH, Jacobs GD (1962) J Chem Phys 36:1251

    Google Scholar 

  15. Typke V, Dakkouri M, Zeil W (1974) Z Naturforsch 29a:1081

    Google Scholar 

  16. Endo K, Takeo H, Matsumura C (1977) Bull Chem Soc Japan 50:626

    Google Scholar 

  17. Takeo H, Matsumura C (1977) Bull Chem Soc Japan 50:1633

    Google Scholar 

  18. Morino Y, Hirota E (1958) J Chem Phys 28:185

    Google Scholar 

  19. Shiki Y, Kuginuki Y, Hasegawa A, Hayashi M (1978) J Mol Spectrosc 73:9

    Google Scholar 

  20. Stölevik R, Bakken P (1985) J Mol Struct (Theochem) 124:133

    Google Scholar 

  21. Beckers H, Bürger H, Eujen R, Rempfer B, Oberhammer H (1986) J Mol Struct 140:281

    Google Scholar 

  22. Wiberg N, Schuster H, Simon A, Peters K (1985) Angew Chem 98:100

    Google Scholar 

  23. Beckers H, Bürger H, Eujen R (1985) J Fluorine Chem 27:461

    Google Scholar 

  24. Bondi A (1964) J Phys Chem 68:441

    Google Scholar 

  25. Schiffer H, to be published, see also [11]

  26. E SCF(CH4)= −40.20906 a.u., E SCF(SiH4) =−291.11670 a.u., E SCF(CHCl3) =−1416.80083 a.u., and E SCF(SiHCl3) = −1668.01590 a.u. from results of geometry optimizations at the SCF level [25] with basis sets as described in Sect. 2

  27. McMillan DF, Golden DM (1982) Ann Rev Phys Chem 33:503

    Google Scholar 

  28. Doncaster AM, Walsh R (1981) Int J Chem Kinet 13:503

    Google Scholar 

  29. Computed from the known standard heats of formation for H (281 kJ/mol [30]), SiCl3 (−335 kJ/mol [3]), and SiHCl3 (−499 kJ/mol [3])

  30. Weast RC (ed) CRC handbook of chemistry and physics, 65th edn. CRC Press, Boca Raton 1984/1985

    Google Scholar 

  31. We computed the van der Waals-type interaction energy for each intramolecular Cl...Cl distance using the formula of Salter and Kirkwood [32]: Evdw= −3{α3 N)1/2/r6}/4. α means the polarisability of Cl (α = 15.39 a.u. [33]), N is the number of valence electrons of Cl, and r is the intramolecular non-bonding Cl...Cl distance. For the molecules in Eqs. (1–3) we get Evdw(CHCl3) ≈ Evdw(SiH3CCl3) ≈ −34 kJ/mol,Evdw(SiHCl3) ≈ Evdw(SiCl3CH3) ≈ −15 kJ/mol, and Evdw(SiCl3CCl3) = −69 kJ/mol

  32. Slater JC, Kirkwood JG (1931) Phys Rev 37:682

    Google Scholar 

  33. Ketelaar JAA (1958) Chemical constitution. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffer, H., Ahlrichs, R. A theoretical study of structure and bonding of chlorinated silaethanes and 1,3-disilapropanes. Theoret. Chim. Acta 75, 99–110 (1989). https://doi.org/10.1007/BF00527712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527712

Key words

Navigation