Skip to main content
Log in

Pseudopotential study of the rare earth monohydrides, monoxides and monofluorides

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Nonrelativistic and quasirelativistic energy-adjusted pseudopotentials for fixed 4f subconfigurations of the rare earth elements La through Lu together with corresponding optimized valence basis sets have been used in SCF and CI(SD) calculations to determine the spectroscopic constants for the energetically low lying superconfigurations of the lanthanide monohydrides, monoxides and monofluorides. The experimentally observed trends in dissociation energies, bond lengths and vibrational frequencies for the ground states of the calculated superconfigurations of the monoxides and monofluorides are well reproduced. The results for the monohydrides are mainly predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolg M, Savin A, Stoll H, Preuss H (1989) Theor Chim Acta 75:173–194

    Google Scholar 

  2. Field RW (1982) Ber Bunsenges Phys Chem 86:771

    Google Scholar 

  3. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Google Scholar 

  4. Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels-the rare earth elements. NSRDS-NBS-60, National Bureau of Standards, US Dept. of Commerce, Washington

    Google Scholar 

  5. Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357

    Google Scholar 

  6. Bachelet GB, Hamann DR, Schlüter M (1982) Phys Rev B 26:4199

    Google Scholar 

  7. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Google Scholar 

  8. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Google Scholar 

  9. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comp Chem 8:226

    Google Scholar 

  10. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comp Chem 8:256

    Google Scholar 

  11. Schwerdtfeger P (1978) Program JUSTPOT, Universität Stuttgart, West Germany

    Google Scholar 

  12. Froese Fischer C (1977) Program MCHF77, Pennsylvania State University, Pennsylvania

    Google Scholar 

  13. Froese Fischer C (1977) The Hartree-Fock method for atoms — A numerical approach. Wiley New York

    Google Scholar 

  14. Dolg M (1987) Modified version of the program MCHF77, Ref. 12

    Google Scholar 

  15. Wood JH, Boring AM (1978) Phys Rev B18:2701

    Google Scholar 

  16. Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010

    Google Scholar 

  17. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Google Scholar 

  18. Kobus J, Jaskolski W (1987) J Phys B, At Mol Phys 20:4949

    Google Scholar 

  19. Kobus J (1986) Acta Phys Pol. B17:771

    Google Scholar 

  20. Karwowski J, Kobus J (1985) Int J Quant Chem 28:741

    Google Scholar 

  21. Pacios LF, Christiansen PA (1985) J Chem Phys 82:2664

    Google Scholar 

  22. Hurley MM, Pacios LF, Christiansen PA, Ross RB, Ermler WC (1986) J Chem Phys 84:6840

    Google Scholar 

  23. LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812

    Google Scholar 

  24. Lee YS, Ermler WC, Pitzer KS (1977) J Chem Phys 67:5861

    Google Scholar 

  25. Ermler WC, Lee YS, Pitzer KS, Winter NW (1978) J Chem Phys 69:976

    Google Scholar 

  26. Kahn LR, Baybutt P, Truhlar DG (1976) J Chem Phys 65:3826

    Google Scholar 

  27. Christiansen PA, Lee YS, Pitzer KS (1979) J Chem Phys 71:4445

    Google Scholar 

  28. Barthelat FC, Durand P (1981) Program PSATOM, Universite Paul Sabatier, Toulouse, France

    Google Scholar 

  29. Werner HJ, Universität Bielefeld, West Germany, Meyer W (1987) Universität Kaiserslautern, West Germany, program MOLPRO, Cray version

  30. Huzinaga S (1964) J Chem Phys 42:1293

    Google Scholar 

  31. Dunning TH (1970) J Chem Phys 53:2823

    Google Scholar 

  32. Dunning TH, Hay PJ (1977) In: Schaefer HF (ed) Modern theoretical chemistry, vol. III. Methods of electronic structure theory. Plenum Press, New York

    Google Scholar 

  33. Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations. In: Physical sciences data, vol 16. Elsevier, Amsterdam

    Google Scholar 

  34. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Google Scholar 

  35. Vander Sluis KL, Nugent LJ (1974) J Chem Phys 60:1927

    Google Scholar 

  36. Vander Sluis KL, Nugent LJ (1974) J Opt Soc Am 64:687

    Google Scholar 

  37. Sugar J, Reader J (1973) J Chem Phys 59:2083

    Google Scholar 

  38. Murad E, Hildenbrand DL (1980) J Chem Phys 73:4005

    Google Scholar 

  39. McMurchie L, Elbert S, Langhoff S, Davidson ER (1982) Program MELD, University of Washington, Seattle, Washington; van Lenthe JH, Saunders VR (1985) Program ATMOL, Science and Engineering Research Council, Daresbury Laboratory, Warrington, Great Britain

    Google Scholar 

  40. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Van Nostrand, New York

    Google Scholar 

  41. Hafner P, Schwarz WHE, Esser M, Wechsel-Trakowski E (1978) Program UHREL, Institut für Theoretische Chemie, Universität Siegen

  42. Grant IP, McKenzie BJ, Norrington PH, Mayers DF, Oxford University, Pyper NC, Cambridge University (1980) Program MCDF

  43. Ames LL, Walsh PN, White D (1967) J Phys Chem 71:2707

    Google Scholar 

  44. Wedig U, Dolg M, Stoll H, Preuss H (1986) In: Veillard A (ed) Quantum chemistry. The challenge of transition metals and coordination chemistry, vol. 176. (NATO ASI Series, Series C) Reidel, Dordrecht

    Google Scholar 

  45. Kolb D, Johnson WR (1982) Phys Rev A26:19

    Google Scholar 

  46. Meyer W (1973) J Chem Phys 58:1017; (1976) 64:407

    Google Scholar 

  47. Bernard A, Effantin C (1986) Can J Phys 64:246

    Google Scholar 

  48. Dulick M, Murad E, Barrow RF (1986) J Chem Phys 85:385

    Google Scholar 

  49. McDonald SA (1985) Ph.D. thesis, M.I.T., cited in ref. 49

  50. Linton C, McDonald S, Rice S, Dulick M, Liu YC, Field RW (1983) J Molec Spec 101:332

    Google Scholar 

  51. Bernard A, Sibai AM (1980) Z Naturforsch 35a:1313

    Google Scholar 

  52. Linton C, Dulick M, Field RW, Carette P, Leyland PC, Barrow RF (1983) J Molec Spec 102:441

    Google Scholar 

  53. Dulick M, Field RW, Beaufils JC, Schamps J (1981) J Molec Spec 87:278

    Google Scholar 

  54. Yadav BR, Rai SB, Rai DK (1981) J Molec Spec 89:1

    Google Scholar 

  55. Carette P, Hocquet A, Donay M, Pinchemel P (1987) J Molec Spec 124:243

    Google Scholar 

  56. Kulikov AN, Kaledin LA, Kobyliansky AI, Gurvich LV (1984) Can J Phys 62:1855

    Google Scholar 

  57. Linton C, Gaudet DM, Schall H (1986) J Molec Spec 115:58

    Google Scholar 

  58. Kaledin LA, Shenyavskaya EA (1981) J Molec Spec 90:590

    Google Scholar 

  59. Liu YC, Linton C, Schall H, Field RW (1984) J Molec Spec 104:72

    Google Scholar 

  60. Lumley DJW, Barrow RF (1978) J Molec Spec 69:494

    Google Scholar 

  61. Gole J, Chalek CL (1976) J Chem Phys 65:4384

    Google Scholar 

  62. Murad E (1978) Chem Phys Lett 59:359

    Google Scholar 

  63. Balducci G, Gigli G, Guido M (1977) J Chem Phys 67:147

    Google Scholar 

  64. Murad E, Hildenbrand DL (1976) J Chem Phys 65:3250

    Google Scholar 

  65. Dirscherl R, Michel WK (1976) Chem Phys Lett 43:547

    Google Scholar 

  66. Cosmovici CB, D'Anna E, D'Innocenzo A, Leggieri G, Perrone A, Dirscherl R (1977) Chem Phys Lett 47:241

    Google Scholar 

  67. Radzig AA, Smirnov BM (1985) Reference data on atoms, molecules and ions (Springer Series in Chemical Physics, vol 31) Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  68. Kleinschmidt PD, Lau KH, Hildenbrand DL (1981) J Chem Phys 74:653

    Google Scholar 

  69. Lee HU, Zare RN (1977) J Molec Spec 64:233

    Google Scholar 

  70. Linton C, Dulick M, Field RW (1979) J Molec Spec 78:428

    Google Scholar 

  71. Linton C, Dulick M, Field RW, Carette P, Barrow RF (1981) J Chem Phys 74:189

    Google Scholar 

  72. DeKock RL, Weltner W (1971) J Chem Phys 75:514

    Google Scholar 

  73. Barrow RF, Clements RM, Harris SM, Jenson PP (1979) Astrophys J 229:439

    Google Scholar 

  74. Gabelnick SD, Reedy GT, Chasanovm MG (1974) J Chem Phys 60:1167

    Google Scholar 

  75. Dulick M, Field RW (1985) J Molec Spec 113:105

    Google Scholar 

  76. Yadav BR, Rai DK, Rai SB (1976) Can J Phys 54:2429

    Google Scholar 

  77. VanZee RJ, Ferrante RF, Zeringue KJ, Weltner W (1981) J Chem Phys 75:5297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolg, M., Stoll, H. Pseudopotential study of the rare earth monohydrides, monoxides and monofluorides. Theoret. Chim. Acta 75, 369–387 (1989). https://doi.org/10.1007/BF00526695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526695

Key words

Navigation