Skip to main content
Log in

Relativistic treatment of excited electronic states of atomic copper

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The2 S g (d 10 s 1),2 D g (d 9 s 2),2 P u (d 10 p 1),2,4{F,P} u (d 9 s 1 p 1) states of copper as well as the1 S g (d 10) state of the positive copper ion are studied byab initio methods. Relativistic wavefunctions are determined variationally solving a one-component no-pair equation. This approximation makes it possible to treat all the states in a common set of orbitals. It is found that differential relativistic effects for the excitation energies are independent of the one-particle basis employed. The first-order perturbation estimate using the mass-velocity and Darwin operators depends critically on the description of the 3s and 3p core electrons. Among the various one-particle sets tested,2 D g orbitals, with the (4s, 4p) near-degeneracy effects included in the orbital optimization step, are most appropriate for the correlation treatment. They give an error of 0.3 eV for the2 S g 2 D g separation only slightly inferior to our best result employing parent orbitals for both states. All other states agree with experiment to within 0.2 eV. The first-order spin-orbit splitting of the2 D g state (−2006 cm−1) is in excellent agreement with the experimental value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chong DP, Langhoff SR, Bauschlicher CW, Walch SP, Partridge H (1986) J Chem Phys 85:2850

    Google Scholar 

  2. Barthelat JC, Hliwa M, Pélissier M, Spiegelmann F (1986) Chem Phys Lett 132:205

    Google Scholar 

  3. Winter NW, Huestis DL (1987) Chem Phys Lett 133:311

    Google Scholar 

  4. Marian CM (1991) J Chem Phys 94:5574

    Google Scholar 

  5. Langhoff SR, Bauschlicher CW (1986) Chem Phys Lett 124:241

    Google Scholar 

  6. Ozin GA, Mitchell SR, Garcia-Prieto J (1983) J Am Chem Soc 105:6399

    Google Scholar 

  7. Ozin GA, Gracie C (1984) J Phys Chem 88:643

    Google Scholar 

  8. Garcia-Prieto G, Ruiz ME, Poulin E, Ozin GA, Novaro O (1984) J Chem Phys 81:5920

    Google Scholar 

  9. Bondybey VE, English JH (1984) J Phys Chem 88:2247

    Google Scholar 

  10. Bauschlicher CW, Walch SP, Siegbahn PEM (1982) J Chem Phys 76:6015

    Google Scholar 

  11. Bauschlicher CW, Walch SP (1981) J Chem Phys 74:5922

    Google Scholar 

  12. Sunil KK, Jordan KD (1985) J Chem Phys 82:873

    Google Scholar 

  13. Werner HJ, Martin RL (1985) Chem Phys Lett 113:451

    Google Scholar 

  14. Marian CM, Blomberg MRA, Siegbahn PEM (1989) J Chem Phys 91:3589

    Google Scholar 

  15. Marian CM (1990) J Chem Phys 93:1176

    Google Scholar 

  16. Bauschlicher CW, Langhoff SR, Komornicki A (1990) Theoret Chim Acta 77:263

    Google Scholar 

  17. Martin RL, Hay JP (1981) J Chem Phys 75:4539

    Google Scholar 

  18. Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010

    Google Scholar 

  19. Martin RL (1983) J Phys Chem 87:750

    Google Scholar 

  20. Schwarz WHE, Chu SY, Mark F (1983) Mol Phys 50:603

    Google Scholar 

  21. Blomberg MRA, Wahlgren U (1988) Chem Phys Lett 145:393

    Google Scholar 

  22. Sucher J (1980) Phys Rev A 22:348

    Google Scholar 

  23. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Google Scholar 

  24. Hardekopf G, Sucher J (1984) Phys Rev A 30:703

    Google Scholar 

  25. Jansen G, Hess BA (1989) Phys Rev A 39:6016

    PubMed  Google Scholar 

  26. Hess BA (1985) Phys Rev A 32:756

    PubMed  Google Scholar 

  27. Hess BA (1986) Phys Rev A 33:3742; Hess BA, Chandra P (1987) Physica Scripta 36:412

    PubMed  Google Scholar 

  28. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  29. Roos BO, Siegbahn PEM (1977) In: Schaefer III HF (ed) Methods of electronic structure theory. Plenum, New York, p 277

    Google Scholar 

  30. Ahlrichs R, Scharf P, Ehrhardt C (1985) J Chem Phys 82:890

    Google Scholar 

  31. Chong DP, Langhoff SR (1986) J Chem Phys 84:5606; we use the implementation of Blomberg MRA, Siegbahn PEM.

    Google Scholar 

  32. Siegbahn PEM (1983) Int J Quant Chem 23:1869

    Google Scholar 

  33. Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33; ibd. (1975) 39:33; Buenker RJ, Peyerimhoff SD, Butscher W (1978) Mol Phys 35:771

    Google Scholar 

  34. The spin-orbit programs are written by Hess BA, Marian CM, Chandra P

  35. Moss RE (1973) Advanced molecular quantum mechanics. Chapman and Hall, London

    Google Scholar 

  36. Wachters AJH (1970) J Chem Phys 32:1033

    Google Scholar 

  37. Hay PJ (1977) J Chem Phys 66:4377

    Google Scholar 

  38. Langhoff SR, Bauschlicher CW (1986) Chem Phys Lett 124:241

    Google Scholar 

  39. Marian CM (1990) Chem Phys Lett 173:175

    Google Scholar 

  40. Desclaux JP (1973) At Data Nucl Data Tables 12:311

    Google Scholar 

  41. Moore CE (1949) Atomic Energy Levels, NBS Circular 467, (Natl Bur Std, Washington)

    Google Scholar 

  42. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Google Scholar 

  43. Partridge H, unpublished results

  44. Bauschlicher CW, Siegbahn PEM, Pettersson LGM (1988) Theoret Chim Acta 74:479

    Google Scholar 

  45. Bauschlicher CW, Walch SP, Partridge H (1982) J Chem Phys 76:1033

    Google Scholar 

  46. Werner HJ (1984) Faraday Symp Chem Soc 19:202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marian, C.M., Hippe, D., Hess, B.A. et al. Relativistic treatment of excited electronic states of atomic copper. Theoret. Chim. Acta 81, 375–390 (1992). https://doi.org/10.1007/BF01134862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134862

Key words

Navigation