Skip to main content
Log in

Entwicklung eines Analysenverfahrens für Rutheniumspuren in Pflanzenmaterial und Ermittlung der Transferfaktoren Boden/Pflanzen für Rutheniumverbindungen aus Wiederaufarbeitungsanlagen

Development of a method for analyzing traces of ruthenium in plant materials and determination of the transfer factors soil/plant for ruthenium compounds from reprocessing plants

  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

Considerably different transfer factors soil/plant are reported in literature for the fission product ruthenium. As ruthenium belongs to those radioactive nuclides, that could be released from a reprocessing plant during an accident, reliable transfer factors should be explored under middle-European conditions for some typical nutrition plants. In an artificial humous and sandy soil spiked with 106Ru as RuO2 and RuCl3, pasture grass was grown under artificial illumination in our laboratory. The amounts of ruthenium taken up by the plants were determined by γ-spectrometry. For open-air investigations with pasture grass, wheat and potatoes inactive ruthenium(III) chloride and ruthenium nitrosylchloride were used. Ruthenium was determined by electrothermal atomic absorption spectrometry (ETAAS) after destroying the organic material and concentrating the solution. The concentration and chemical form of the ruthenium exert an unimportant influence on the transfer factor. For the pasture-grass, the stems of wheat and the weed of potatoes it amounts to 0.00005 to 0.0015, for the ear of wheat to about 0.00005. In peeled potatoes there was no ruthenium detectable, therefore the limit of detection leads to a transfer factor ≤0.00001. So it is evident that ruthenium is little available for the roots of the plants. In the event of an accident in a nuclear plant the uptake of radioactive ruthenium by roots has only negligible radioecological consequences. This applies even if 50 years of ruthenium enrichment in the soil are assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. BaumgÄrtel G, Huppert KL, Merz E (1984) Brennstoffe aus der Asche — Die Wiederaufarbeitung von Kernbrennstoffen. Verlag Girardet, Essen

    Google Scholar 

  2. Krawczynski SJB (1967) Radioaktive AbfÄlle — Aufbereitung — Lagerung — Beseitigung. Thiemig, München

    Google Scholar 

  3. Heimerl W (1978) Chemie Unserer Zeit 3:82

    Google Scholar 

  4. Strahlenschutzkommission (1979) Allgemeine Berechnungsgrundlagen für die Bestimmung der Strahlenexposition durch Emission radioaktiver Stoffe mit der Abluft, Bundesminister des Innern (Hrsg) Gemeinsames Ministerialblatt Nr. 21

  5. Ng YC, Burton CA, Thompson SE, Tandy RK, Kretner HK, Pratt MW (1986) Prediction of the maximum dosage to man from the fallout of nuclear devices. IV. Handbook for estimating the maximum internal dose from radionuclides released to the biosphere, UCRL-50163 (Pt.4) US At. Energy Comm.. for sale by the clearinghouse for Federal Scientific and Technical Information, US Department of Commerce, Springfield, Va 22151

    Google Scholar 

  6. US Nuclear Regulatory Commission (1976) Calculation of annual doses to man from routine releases of reactor effluents for the purpose of evaluating compliance with CFR 50. Regulatory Guide 1.109 und 1.113, 1976

  7. Fletcher, JM (1955) J Inorg Nuclear Chem 1:378

    Google Scholar 

  8. Baker DA, Hoenes GR, Soldat JK (1986) Food — an interactive code to calculate internal radiation dose from contaminated food products, BNWL-SA-5523, unclassified report, Batelle Pacific Northwest Labs., Richland, Wash

    Google Scholar 

  9. Franke B, Ratka R, Sand VDH (1981) Zur AbschÄtzung des Transfers von Radionukliden aus dem Boden in Pflanzen. In: Hessischer Minister für Wirtschaft und Technologie (Hrsg) Modellstudie Radioökologie Biblis. Wiesbaden

    Google Scholar 

  10. Handl J, Kühn W (1982) Atomkernenergie 41:57

    Google Scholar 

  11. Koda Y (1977) J Radioanal Chem 36:35

    Google Scholar 

  12. Tredoux M, Sellschop JPF, Watterson JIW, Erasmus CS (1983) J Radioanal Chem 76:171

    Google Scholar 

  13. Chung KS, Beamish FE (1967) Anal Lett 1:45

    Google Scholar 

  14. Gijbels R, Zeels J (1977) J Radioanal Chem 35:115

    Google Scholar 

  15. Mang M, Herrmann G, Trautmann N (1985) Abtrennung des Technetiums aus Luft-, Wasser- und Bodenproben, Vortrag anlÄ\lich des Statusberichtes 1985 des ProjekttrÄgers UniversitÄtsforschung zum nuklearen Brennstoffkreislauf, Karlsruhe, 30.–31. Januar 1986

  16. Chung KS, Beamish EE (1968) Anal Chim Acta 43:357

    Google Scholar 

  17. Gijbels R, Hoste J (1963) Anal Chim Acta 29:289

    Google Scholar 

  18. Kalinina VE, Yatsimirskii KB, Zimina TS (1969) Zh Anal Khim 24:622

    Google Scholar 

  19. Surasiti C, Sandell EB (1960) Anal Chim Acta 22:261

    Google Scholar 

  20. Ottaway JM, Fuller CW, Allan JJ (1969) Analyst 94:522

    Google Scholar 

  21. Rysev AP, Zhitenko LP, Alekseeva II (1979) Zh Anal Khim 34:1132

    Google Scholar 

  22. Rowston WB, Ottaway JM (1979) Analyst 104:645

    Google Scholar 

  23. Schlemmer G, Welz B, Grobenski Z (1984) Determination of platinum group elements in a stabilized temperature furnace. Vortrag gehalten auf der 1984 Pittsburgh Conference, Atlantic City, New Jersey (USA), 5.–8. MÄrz 1984

  24. Stojanik B, Hörner L, Karnowski KD, Walkenhorst M (1985) The use of atomic spectrometry for the product control in the WAK-reprocessing plant. Vortrag gehalten auf der Karlsruhe International Conference on Analytical Chemistry in Nuclear Technology, Karlsruhe, 3.–6. Juni 1985

  25. Fernandez FJ, Iannarone J (1971) At Absorpt Newsl 10:65

    Google Scholar 

  26. Haines J, Robert VDR (1984) S Afr J Chem 37:121

    Google Scholar 

  27. Sighinolfi GP, Gorgani C, Mohamed AH (1984) Geostandards Newsl 8:25

    Google Scholar 

  28. Megarrity RG, Siebert BD (1977) Analyst 102:95

    Google Scholar 

  29. Goryunov AA, Sveshnikova LL (1961) Russ J Inorg Chem 6:793

    Google Scholar 

  30. Bowen H-JM (1968) Anal Chem 40:969

    Google Scholar 

  31. Biswas SR, Mukerji J (1968) Indian J Chem 6:51

    Google Scholar 

  32. Megarrity RG, Siebert BD (1977) Analyst 102:95

    Google Scholar 

  33. Henschler D (Hrsg) (1983) Analysen in biologischem Material, Bd 2. Verlag Chemie, Weinheim

    Google Scholar 

  34. Woll G, Dissertation, Fachrichtung Anorganische Analytik und Radiochemie, UniversitÄt des Saarlandes, Saarbrücken, in Vorbereitung

  35. Huth R (1987) Dissertation, Fachrichtung Anorganische Analytik und Radiochemie, UniversitÄt des Saarlandes, Saarbrücken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. W. Fresenius zum 75. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasius, E., Huth, R. & Neumann, W. Entwicklung eines Analysenverfahrens für Rutheniumspuren in Pflanzenmaterial und Ermittlung der Transferfaktoren Boden/Pflanzen für Rutheniumverbindungen aus Wiederaufarbeitungsanlagen. Z. Anal. Chem. 331, 310–315 (1988). https://doi.org/10.1007/BF00481901

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00481901

Navigation