Skip to main content
Log in

Electrochemical determination of the anionic particle charge of aquatic fulvic acids

Elektrochemische Bestimmung der anionischen Partikelladung aquatischer Fulvinsäuren

  • Original Papers
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

The fulvic acid (FA) fractions of humic substances from river water and bog lakes and of humic-like substances from landfill leachates were isolated by the XAD-method and titrated by a cationic polyelectrolyte. The isoelectric point of net charge of the FA samples was calculated by the streaming current detection (SCD)-technique and a new parameter of charge density (aPC) was calculated from the titer volume. The aPC-values of the FA are low for humic like substances (0.22–1.76 μeq/mg DOC) and high (2.41–5.60 μeq/mg DOC) for humic substances. Polarographically determined Cu(II)-complexation capacities (CuCC) of humic-like substances are in good linear relationship to their aPC-values. Even though SCD-signals only supply qualitative information, a useful fingerprint of the FA sample is given by the shape of the titration curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gjessing ET (1976) Physical and chemical characteristics of aquatic humus. Ann Arbor Science, Ann Arbor, Michigan

    Google Scholar 

  2. Stevenson FJ (1982) Humus chemistry. John Wiley, New York

    Google Scholar 

  3. Frimmel FH, Christman RF (eds) (1988) Humic substances and their role in the environment. John Wiley, Chichester

    Google Scholar 

  4. Randtke SJ (1988) J Am Water Works Assoc 80:40–56

    Google Scholar 

  5. Sontheimer H, Crittenden JC, Summers FRS (1988) Activated carbon for water treatment. G. Braun GmbH, Karlsruhe, pp 511–537

    Google Scholar 

  6. Sposito G (1981) Environ Sci Technol 15:396–403

    Google Scholar 

  7. Rook JJ (1974) Water Treat Exam 23:234–243

    Google Scholar 

  8. Perdue EM, Reuter JH, Ghosal M (1980) Geochim Cosmochim Acta 44:1841–1851

    Google Scholar 

  9. Neubecker TA, Allen HE (1983) Wat Res 17:1–14

    Google Scholar 

  10. Gamble DS (1970) Can J Chem 48:2662–2669

    Google Scholar 

  11. Perdue EM (1985) In Aiken GR, McKnight DA, Wershaw RL, McCarthy P (eds) Humic substances in soil, sediment and water. John Wiley, New York, pp 493–559

    Google Scholar 

  12. Saar RA, Weber JH (1982) Environ Sci Technol 16:510A-517A

    Google Scholar 

  13. Tuschall JR, Brezonik PL (1983) In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor, Michigan, pp 275–294

    Google Scholar 

  14. Hall ES, Packham RF (1965) J Am Water Works Assoc 57:1149–1166

    Google Scholar 

  15. Edwards GA, Amirtharajah A (1985) J Am Water Works Assoc 77:50–57

    Google Scholar 

  16. Dentel SK (1988) Environ Sci Technol 22:825–832

    Google Scholar 

  17. Dempsey BA, O'Melia CR (1983) In: Christman RF, Gjessing ET (eds) Aquatic terrestrial humic materials. Ann Arbor Science, Ann Arbor, Michigan, pp 239–273

    Google Scholar 

  18. Giesy JP, Alberts JJ, Evans DW (1986) Environ Toxicol Chem 5:139–154

    Google Scholar 

  19. Eberle SH, Feuerstein W (1979) Naturwissenschaften 66:572–573

    Google Scholar 

  20. Gamble DS (1972) Can J Chem 50:2680–2690

    Google Scholar 

  21. Frimmel FH, Hopp W, Quentin KE (1985) Z Wasser Abwasser Forsch 18:259–262

    Google Scholar 

  22. Nik EA, Carlson DA, Eikum AS, Gjessing ET (1985) J Am Water Works Assoc 77:58–66

    Google Scholar 

  23. Hundt TR, O'Melia CR (1988) J Am Water Works Assoc 80:176–186

    Google Scholar 

  24. Hamann CH, Vielstich W (1981) Elektrochemie I. Verlag Chemie, Weinheim, pp 165–167

    Google Scholar 

  25. Dentel SK, Thomas AV, Kingery KM (1989) Wat Res 23:413–421, 423–430

    Google Scholar 

  26. Kawamura S, Hanna GP, Shumate KS (1967) J Am Water Works Assoc 59:1003–1013

    Google Scholar 

  27. Narkis N, Rebhun M (1977) J Am Water Works Assoc 69:325–328

    Google Scholar 

  28. Glaser HT, Edzwald JK (1979) Environ Sci Technol 13:299–305

    Google Scholar 

  29. Spillmann P (1989) Intern. Symp. on Groundwater Management: Quantity and quality. Benidorm, Spain

    Google Scholar 

  30. Mantoura RFC, Riley JP (1975) Anal Chim Acta 76:97–106

    Google Scholar 

  31. Frimmel FH, Bauer H (1987) Sci Total Environ 62:139–148

    Google Scholar 

  32. Frimmel FH, Weis M (1988) Vom Wasser 71:255–267

    Google Scholar 

  33. Weis M, Abbt-Braun G, Frimmel FH (1989) Sci Total Environ 81/82:343–352

    Google Scholar 

  34. Abbt-Braun G; pers. commun.

  35. Frimmel FH, Geywitz J (1983) Fresenius Z Anal Chem 325:68–72

    Google Scholar 

  36. Hayes MHB, Swift RS (1978) In: Greenland DJ, Hayes MHB (eds) The chemistry of soil constituents. John Wiley, Chichester, pp 276–282

    Google Scholar 

  37. Perdue EM, Lytle CR (1983) Environ Sci Technol 17:654–660

    Google Scholar 

  38. Weis M, Valera FS, Frimmel FH (1989) Z Wasser Abwasser Forsch 22 (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. G. Tölg on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weis, M., Frimmel, F.H. Electrochemical determination of the anionic particle charge of aquatic fulvic acids. Z. Anal. Chem. 335, 927–930 (1989). https://doi.org/10.1007/BF00466384

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00466384

Keywords

Navigation