Skip to main content
Log in

Electrotonic coupling between neurons in the rat lateral vestibular nucleus

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Correlation of morphological and electrophysiological data strongly suggest that in rat, the giant cells of the lateral vestibular nucleus (L.V.N.) are electrotonically coupled. 1. in addition to “active zones” large terminals synapsing on the perikaryon and/or the main dendritic trunk of the cells bear “gap” junctions which are interpreted as low electrical resistance pathways between neurons. 2. electrical activity of the giant cells was recorded intracellularly as the vestibulo-spinal tract was stimulated. Graded antidromic stimulation produced graded antidromic depolarizations (G.A.Ds) in 69% of cells with high threshold axons. 3. the latency of the G.A.Ds was too short to allow for chemical transmission through afferents or recurrent collaterals. 4. collision experiments demonstrated that directly evoked spikes blocked the antidromic spikes but did not block the G.A.Ds which thus were accounted for by activation of cells others than the impaled ones. 5. lesion experiments indicated that afferent fibers from the spinal cord terminate exclusively in the dorsal part of the L.V.N. Since G.A.Ds were recorded all throughout the nucleus, they were not excitatory post synaptic potentials (EPSPs) from spinal afferents. 6. when the strength of the spinal cord stimulation was increased EPSPs were also generated but they were distinct from the G.A.Ds by their latencies, time course and maximum amplitude. 7. since no direct contact is observed between neurons it is inferred that, as in other documented cases, coupling between giant cells is mediated by way of presynaptic fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, T., Otani, T.: Response of single motoneurones to direct stimulation in toad's spinal cord. J. Neurophysiol. 18, 472–485 (1955).

    Google Scholar 

  • Asada, Y., Bennett, M.V.L.: Experimental alteration of coupling resistance at an electrotonic synapse. J. Cell Biol. 49, 159–172 (1971).

    Google Scholar 

  • Auerbach, A.A., Bennett, M.V.L.: A rectifying electrotonic synapse in the central nervous system of a vertebrate. J. gen. Physiol. 53, 183–237 (1969).

    Google Scholar 

  • Baker, R., Llinás, R.: Electrotonic coupling between neurones in the rat mesencephalie nucleus. J. Physiol. (Lond.) 212, 45–63 (1971).

    Google Scholar 

  • Bennett, M.V.L.: Physiology of electrotonic junctions. Ann. N.Y. Acad. Sci. 137, 509–539 (1966).

    Google Scholar 

  • —: Similarities between chemically and electrically mediated transmission. In: Physiological and Biochemical Aspects of Nervous Integration, pp. 73–128. Ed. by F.D. Carlson. Englewood Cliffs, N.J.: Prentice Hall 1968a.

    Google Scholar 

  • —: Neural control of electric organs. In: The Central Nervous System and Fish Behavior, pp. 147–169. Ed. by D. Ingle. Chicago, Ill.: Univ. of Chicago Press 1968b.

    Google Scholar 

  • —, Aljure, E., Nakajima, Y., Pappas, G.D.: Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science 141, 262–264 (1963).

    Google Scholar 

  • — Gimenez, M., Nakajima, Y., Pappas, G.D.: Spinal and medullary nuclei controlling electric organ in the eel, Electrophorus. Biol. Bull. Mar. Biol. Lab. Woods Hole 127, 362 (1964).

    Google Scholar 

  • — Nakajima, Y. Pappas, G.D.: Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J. Neurophysiol. 30, 161–179 (1967a).

    Google Scholar 

  • — Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J. Neurophysiol. 30, 209–235 (1967b).

    Google Scholar 

  • — Pappas, G.D.: Neurophysiology and ultrastructure of a synchronously firing nucleus in toadfish Opsanus. Fed. Proc. 24, 462 (1965).

    Google Scholar 

  • — Aljure, E., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J. Neurophysiol. 30, 180–208 (1967c).

    Google Scholar 

  • — Gimenez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J. Neurophysiol. 30, 236–300 (1967d).

    Google Scholar 

  • Brodal, A., Angaut, P.: The termination of spinovestibular fibres in the cat. Brain Res. 5, 494–500 (1967).

    Google Scholar 

  • Dowling, J.E., Boycott, B.B.: Organization of the primate retina: electron microscopy. Proc. Roy. Soc. 166 B, 80–111 (1966).

    Google Scholar 

  • Eccles, J.C.: The Physiology of Synaspes. Berlin-Göttingen-Heidelberg-New York: Springer 1964.

    Google Scholar 

  • Eckert, R.: Electrical interaction of paired ganglion cells in the leech. J. gen. Physiol. 46, 573–588 (1963).

    Google Scholar 

  • Farquhar, M.G., Palade, G.E.: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Google Scholar 

  • Furshpan, E.J.: “Electrical transmission” at an excitatory synapse in a vertebrate brain Science 144, 878–880 (1964).

    Google Scholar 

  • Furshpan, E.J., Potter, D.D.: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145, 289–325 (1959).

    Google Scholar 

  • Gasser, H.S., Grundfest, H.: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Amer. J. Physiol. 127, 393–414 (1939).

    Google Scholar 

  • Grinnell, A.D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).

    Google Scholar 

  • —: Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA. J. Physiol. (Lond.) 210, 17–43 (1970).

    Google Scholar 

  • Hagiwara, S., Morita, H.: Electrotonic transmission between two nerve cells in leech ganglion. J. Neurophysiol. 25, 721–731 (1962).

    Google Scholar 

  • Hama, K.: Some observations on the fine structure of the giant fibers of the crayfishes (Cambarus Virilus and Cambarus Clarkii) with special reference to the submicroscopic organi zation of the synapses. Anat. Rec. 141, 275–293 (1961).

    Google Scholar 

  • Hauglie-Hanssen, E.: Intrinsic neuronal organization of the vestibular nuclear complex in the cat. A Golgi study. Ergebn. Anat. Entwickl.-Gesch. 40 (5), 7–105 (1968).

    Google Scholar 

  • Hess, A., Pilar, G., Weakly, J.N.: Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. (Lond.) 202, 339–354 (1969).

    Google Scholar 

  • Hinojosa, R., Eobertson, J.D.: Ultrastructure of the spoon type synaptic endings in the nucleus vestibularis tangentialis of the chick. J. Cell Biol. 34, 421–430 (1967).

    Google Scholar 

  • Hinrichsen, C.F.L., Larramendi, L.M.H.: Synapses and cluster formation of the mouse mesencephalic fifth nucleus. Brain Res. 7, 296–299 (1968).

    Google Scholar 

  • Hubbard, J.I., Schmidt, R.F.: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–167 (1963).

    Google Scholar 

  • Ito, M., Hongo, T., Yoshida, M., Okada, Y., Obata, K.: Antidromic and trans-synaptic activation of Deiters neurones induced from the spinal cord. Jap. J. Physiol. 14, 638–658 (1964).

    Google Scholar 

  • — Obata, K., Ochi, E.: The origin of cerebellar induced inhibition of Deiters neurones. II. Temporal correlation between the transsynaptic activation of Purkinje cells and the inhibi tion of Deiters neurones. Exp. Brain Res. 2, 350–364 (1966).

    Google Scholar 

  • — Udo, M., Mano, N.: Long inhibitory and excitatory pathways converging onto reticular and Deiters neurones and their relevance to reticulofugal axons. J. Neurophysiol. 33, 210–226 (1970).

    Google Scholar 

  • Karnovsky, M.J.: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol. 35, 213–236 (1967).

    Google Scholar 

  • Katz, B., Miledi, R.: The measurements of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proc. Roy. Soc. 161 B, 483–495 (1961).

    Google Scholar 

  • Koenig, H.L.: Quelques particularites ultrastructurales des zones synaptiques dans le ganglion ciliaire du Poulet. Bull. Ass. Anat. (Nancy) 138, 711–719 (1967).

    Google Scholar 

  • Korn, H., Bennett, M.V.L.: Electrotonic coupling between teleost oculomotor neurons; restriction to somatic regions and relation to function of somatic and dendritic sites of impulse initiation. Brain Res. 38, 433–439 (1972).

    Google Scholar 

  • — Crepel, F., Sotelo, C.: Couplage électrotonique entre les neurones géants du noyau vestibu laire latéral chez le Rat. C.E. Acad. Sci. (Paris) 274, Série D, 1365–1368 (1972).

    Google Scholar 

  • Kriebel, M.E., Bennett, M.V.L., Waxman, S.G., Pappas, G.D.: Oculomotor neurons in fish: electrotonic coupling and multiple sites of impulse initiation. Science 166, 520–524 (1969).

    Google Scholar 

  • Levitan, H., Tauc, L., Segundo, J.P.: Electrical transmission among neurons in the buccal ganglion of a mollusc, Navanax inermis. J. gen. Physiol. 55, 484–496 (1970).

    Google Scholar 

  • Martin, A.R., Pilar, G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963).

    Google Scholar 

  • Meszler, R.M., Pappas, G.D., Bennett, M.V.L.: Morphological demonstration of electrotonic coupling of neurons by way of presynaptic fibers. Brain Res. 36, 412–415 (1972).

    Google Scholar 

  • Nauta, W.J.H.: Silver impregnation of degenerating axons. In: New Research Techniques of Neuroanatomy, pp. 17–26. Ed. by W.F. Windle. Springfield, Ill.: Charles C. Thomas 1957.

    Google Scholar 

  • Nelson, P.G.: Interaction between spinal motoneurones of the cat. J. Neurophysiol. 29, 275–287 (1966).

    Google Scholar 

  • Nicholls, J.G., Purves, D.: Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol. (Lond.) 209, 647–667 (1970).

    Google Scholar 

  • Ogden, T.E.: Intraretinal slow potentials evoked by brain stimulation in the primate. J. Neurophysiol. 29, 898–908 (1966).

    Google Scholar 

  • Pappas, G.D., Asada, Y., Bennett, M.V.L.: Morphological correlate of increased coupling resistance at an electrotonic synapse. J. Cell Biol. 49, 173–188 (1971).

    Google Scholar 

  • — Bennett, M.V.L.: Specialized junctions involved in electrical transmission between neurons. Ann. N.Y. Acad. Sci. 137, 495–508 (1966).

    Google Scholar 

  • Payton, B.W., Bennett, M.V.L., Pappas, G.D.: Permeability and structure of junctional membranes at an electrotonic synapse. Science 166, 1641–1643 (1969).

    Google Scholar 

  • Pompeiano, O., Brodal, A.: The origin of vestibulospinal fibres in the cat. Arch. ital. Biol. 95, 166–195 (1957).

    Google Scholar 

  • Revel, J.P., Karnovsky, M.J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12 (1967).

    Google Scholar 

  • Robertson, J.D.: The occurence of subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221 (1963).

    Google Scholar 

  • Smith, T.G., Wuerker, R.B., Prank, K.: Membrane impedance changes during synaptic transmission in cat spinal motoneurones. J. Neurophysiol. 30, 1072–1096 (1967).

    Google Scholar 

  • Sotelo, C., Llinás, R.: Specialized membrane junctions between neurons in the vertebrate cerebellar cortex. J. Cell Biol. 53, 271–289 (1972).

    Google Scholar 

  • Sotelo, C. Palay, S.L.: Synapses avec des contacts étroits (tight junctions) dans le noyau vestibu laire latéral du Rat. J. Microscopie 6, 86a (1967).

    Google Scholar 

  • —: The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J. Cell Biol. 36, 151–179 (1968).

    Google Scholar 

  • — The fine structure of the lateral vestibular nucleus in the rat. II. Synaptic organization. Brain Res. 18, 93–115 (1970).

    Google Scholar 

  • — Taxi, J.: Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog. Brain Res. 17, 137–141 (1970).

    Google Scholar 

  • Spencer, W.A., Kandel, E.R.: Electrophysiology of hippocampal neurons. IV. Past prepotentials. J. Neurophysiol. 24, 272–285 (1961).

    Google Scholar 

  • Spira, M.E., Bennett, M.V.L.: Synaptic control of electrotonic coupling between neurons. Brain Res. 37, 294–300 (1972).

    Google Scholar 

  • Takahashi, K., Hama, K.: Some observations on the fine structure of the synaptic area in the ciliary ganglion of the chick. Z. Zellforsch. 67, 174–184 (1965).

    Google Scholar 

  • Ten Bruggencate, G., Sonnhof, U., Teichman, R., Weller, E.: A study of the synaptic input to Deiters neurones evoked by stimulation of peripheral nerves and spinal cord. Brain Res. 25, 207–211 (1971).

    Google Scholar 

  • Thomas, R.C., Wilson, V.J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 96–97 (1965).

    Google Scholar 

  • Washizu, Y.: Single spinal motoneurons excitable from two antidromic pathways. Jap. J. Physiol. 10, 121–131 (1960).

    Google Scholar 

  • Watanabe, A., Bullock, T.H.: Modulation of activity of one neurone by subtreshold slow potentials in another in lobster cardiac ganglion. J. gen. Physiol. 43, 1031–1046 (1960).

    Google Scholar 

  • — Grundfest, H.: Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J. gen. Physiol. 45, 267–308 (1961).

    Google Scholar 

  • Wilson, V.J., Kato, M., Thomas, R.C., Peterson, B.W.: Excitation of lateral vestibular neurons by peripheral afferent fibers. J. Neurophysiol. 29, 508–529 (1966).

    Google Scholar 

  • — Wylie, R.M.: A short latency labyrinthyine input to the vestibular nuclei in the pigeon. Science 168, 124–127 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Maitre de Recherches à l'INSERM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korn, H., Sotelo, C. & Crepel, F. Electrotonic coupling between neurons in the rat lateral vestibular nucleus. Exp Brain Res 16, 255–275 (1973). https://doi.org/10.1007/BF00233330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233330

Key words

Navigation