Skip to main content
Log in

Quantitative study of anatomical distribution of respiration related neurons in the pons

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The upper and middle pons and the lower mesencephalon of the cat were explored with extracellular microelectrodes in a search for respiratory related units (RRU). The preparation used, the unanesthetized normocapnic cat, resulted in an “isolated respiratory center” by eliminating input from, as well as output to, lung and thorax. Observations were done in standard experimental conditions which allowed quantitative comparisons of anatomical structures with respect to RRU density (RRUD), RRUD to total unit density (UD) ratio, and a respiratory modulation index (RMI).

Units were recorded in 22 anatomical structures; of 3614 units kept for analysis, 46.9% had a definite respiratory rhythm. The phase relations of frequency variation ere classified into five main categories: 1) tonic expiratory (E) or 2) inspiratory (I) patterns, 3) phase spanning inspiratory-expiratory (IE) or 4) expiratoryinspiratory (EI) patterns, and 5) tonic early expiratory depressed (EED) pattern.

Densely packed RRU were recorded in anatomical structures known to be involved in the command of respiratory accessory musculature (trigeminal system) or thought to be part of the pneumotaxic machinery (nucleus parabrachialis median's, Kölliker-Fuse nucleus). In these structures, RRU proportion was 57–89% of the total neuronal activity.

On the other hand, definite RRU (10–26%) were recorded in structures which are not thought to have a respiratory function (such as inferior colliculus or griseum centralis) where isolate RRU were scattered among non-respiratory tonic units. This group includes nuclei sometimes considered as having a pneumotaxic function.

The pontine reticular formation represents an intermediate category (RRU = 35.6%) where clusters of RRU alternate with non-respiratory modulated cells. The possible role of these clusters is discussed in relation to the hypothesis of multiple coupled respiratory oscillators.

Variance analysis of RRUD, RRUD to UD ratio and RMI shows highly significant differences between the three preceding categories of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, P., Andersson, S.A.: Physiological basis of the alpha rhythm. 235 pp. New York: Appleton-Century-Crofts 1968.

    Google Scholar 

  • Baxter, D.W., Olszewski, J.: Respiratory responses evoked by electrical stimulation of pons and mesencephalon. J. Neurophysiol. 18, 276–287 (1955).

    Google Scholar 

  • Berman, A.L.: The brain stem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. 175 pp. Madison: The University of Wisconsin Press 1968.

    Google Scholar 

  • Bertrand, F., Hugelin, A.: Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. J. Neurophysiol. 34, 189–207 (1971).

    Google Scholar 

  • Blair, E.A., King, C.E., Garrey, W.E.: Inspiratory irradiation. Amer. J. Physiol. 90, 287–288 (1929).

    Google Scholar 

  • Brookhart, J.M.: The respiratory effects of localized faradic stimulation of the medulla oblongata. Amer. J. Physiol. 129, 709–723 (1940).

    Google Scholar 

  • Buchsbaum, M., Callaway, E.: Influences of respiratory cycle on simple reaction time. Percept. motor skills 20, 961–966 (1965).

    Google Scholar 

  • Callaway, E., Buchsbaum, M.: Effects of cardiac and respiratory cycles on averaged visual evoked responses. Electroenceph. clin. Neurophysiol. 19, 476–480 (1965).

    Google Scholar 

  • Carregal, E.J.A., Williams, B., Birzis, U.: Respiratory centers in the dog and squirrel monkey: a comparative study. Resp. Physiol. 3, 333–348 (1967).

    Google Scholar 

  • Castaldi, L.: Studi sulla struttura e sullo sviluppo del mesencefalo: Ricerche in cavia cobaya. Parte 3. Arch. ital. Anat. Embriol. 23, 481–609 (1926).

    Google Scholar 

  • Chapot, G., Hugelin, A., Verroust, J.: Influences des centres respiratoires et de PACO2 sur les réflexes masticateurs. J. Physiol. (Paris) 55, 225 (1963).

    Google Scholar 

  • Cohen, M.I.: Intrinsic periodicity of the pontile pneumotaxic mechanism. Amer. J. Physiol. 195, 23–27 (1958).

    Google Scholar 

  • —: Discharge patterns of brain-stem respiratory neurons in relation to carbon dioxide tension. J. Neurophysiol. 31, 142–165 (1968).

    Google Scholar 

  • —, Hugelin, A.: Suprapontine reticular control of intrinsic respiratory mechanisms. Arch. ital. Biol. 103, 317–334 (1965).

    Google Scholar 

  • —, Wang, S.C.: Respiratory neuronal activity in pons of cat. J. Neurophysiol. 22, 33–50 (1959).

    Google Scholar 

  • Costa, J., Chansou, F., Hugelin, A.: Reconnaissance et tri en temps réel des décharges neuroniques unitaires dans un enregistrement multiunitaire. In: “Applications au domaine biomédical des méthodes et technologies de l'électronique”, pp. 70–74. Grenoble: Laboratoire d'électronique et de technologie de l'informatique 1971.

    Google Scholar 

  • Fuse, G.: Die Randgebiete des Pons und des Mittelhirns. Arb. hirnanat. Inst. Zürich 7, 211–253 (1913).

    Google Scholar 

  • Gesell, R.: A neurophysiological interpretation of the respiratory act. Ergebn. Physiol. 43, 481–639 (1940).

    Google Scholar 

  • —, Bricker, J., Magee, C.: Structural and functional organization of the central mechanism controlling breathing. Amer. J. Physiol. 117, 432–452 (1936).

    Google Scholar 

  • Gootman, P.M., Cohen, M.I.: Efferent splanchnic activity and systemic arterial pressure. Amer. J. Physiol. 219, 897–903 (1970).

    Google Scholar 

  • Hukuhara, T., Jr., Saji, Y., Kumadaki, N., Kojima, H., Tamaki, H., Takeda, R., Sakai, F.: Die Lokalisation von Atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Arch. exp. Pathol. Pharmakol. 263, 462–484 (1969).

    Google Scholar 

  • Hugelin, A., Cohen, M.L: The reticular activating system and respiratory regulation in the cat. Ann. N.Y. Acad. Sci. 109, 586–603 (1963).

    Google Scholar 

  • Jacklet, J.W., Geromino, J.: Circadian rhythms: population of interacting neurons. Science 174, 299–302 (1971).

    Google Scholar 

  • Johnson, F.H., Russell, G.V.: The locus coeruleus as a pneumotaxic center. Anat. Rec. 112, 348 (1952).

    Google Scholar 

  • Kahn, N., Wang, S.C.: Electrophysiologic basis for pontine apneustic center and its role in integration of the Hering-Breuer reflex. J. Neurophysiol. 30, 301–318 (1967).

    Google Scholar 

  • King, C.E.: The effect of respiration on the scratch reflex. Amer. J. Physiol. 98, 368–372 (1931).

    Google Scholar 

  • —, Blair, E.A., Garey, W.E.: The inspiratory augmentation of proprioceptive reflexes. A study of the knee jerk and the Achilles reflex. Amer. J. Physiol. 97, 329–342 (1931).

    Google Scholar 

  • Kling, U., Szekely, G.: Simulation of rhythmic nervous activities. I. Function of networks with cyclic inhibitions. Kybernetik 5, 89–103 (1968).

    Google Scholar 

  • Koepchen, H.P., Seller, H., Polster, J., Langhorst, P.: Über die Fein-Motorik der Muskelstrombahn und ihre Beziehung zur Ateminnervation. Pflügers Arch. 302, 285–299 (1968).

    Google Scholar 

  • Kölliker, A.: Handbuch der Gewebelehre des Menschen. 6. Aufl. 2. Bd.: Nervensystem des Menschen und der Thiere. 874 pp. Leipzig: Engelmann 1896.

    Google Scholar 

  • Magne, H.: Recherches sur le mécanisme du frisson thermique et ses relations avec la fonction respiratoire. J. Physiol. (Paris) 18, 527–533 (1919–1920).

    Google Scholar 

  • Maynard, D.M.: Integration in crustacean ganglia. Symp. Soc. exp. Biol. 20, 111–149 (1966).

    Google Scholar 

  • Ngai, S.H., Wang, S.C.: Organization of central respiratory mechanisms in the brain stem of the cat: localization by stimulation and destruction. Amer. J. Physiol. 190, 343–349 (1957).

    Google Scholar 

  • Pavlidis, T.: Populations of interacting oscillators and circadian rhythms. J. theor. Biol. 22, 418–436 (1969).

    Google Scholar 

  • Richet, C.: Le frisson comme appareil de régulation thermique. Arch. Physiol. 5, 312–326 1893).

    Google Scholar 

  • St. John, W.M., Glasser, R.L., King, R.A.: Apneustic breathing after vagotomy in cats with chronic pneumotaxic center lesions. Resp. Physiol. 12, 239–250 (1971).

    Google Scholar 

  • Salmoiraghi, G.C.: Functional organization of brain stem respiratory neurons. Ann. N.Y. Acad. Sci. 109, 571–582 (1963).

    Google Scholar 

  • —, Burns, B.D.: Localization and patterns of discharge of respiratory neurones in brain stem of cat. J. Neurophysiol. 23, 2–13 (1960).

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Structural substrates for integrative patterns in the brain stem retioular core. In: “Reticular formation of the brain”, pp. 31–55. Ed. by H.H. Jasper, L.D. Proctor, R.S. Knighton, W.C. Noshay, R.T. Costello. Boston: Little, Brown and Co. 1958.

    Google Scholar 

  • Schmidt-Vanderheyden, W., Heinich, L., Koepchen, H.P.: Investigations into the fluctuations of proprioceptive reflexes in man. I. Fluctuations of the patellar tendon reflex and their relation to the vegetative rhythms during spontaneous respiration. Pflügers Arch. 317, 56–71 (1970).

    Google Scholar 

  • —, Koepchen, H.P.: Investigations into the fluctuations of proprioceptive reflexes in man. II. Fluctuations of the patellar tendon reflex and their relation to vegetative rhythms during controlled respiration. Pflügers Arch. 317, 72–83 (1970).

    Google Scholar 

  • Seller, H., Langhorst, P., Richter, D., Koepchen, H.P.: Über der Abhängigkeit der pressoreceptorischen Hemmung des Sympathicus von der Atemphase und ihre Auswirkung in der Vasomotorik. Pflügers Arch. 302, 300–314 (1968).

    Google Scholar 

  • Strughold, H.: Beiträge zur Kenntnis der Refraktärphasen der Eigenreflexe beim gesunden Menschen. Z. Biol. 88, 346–362 (1929).

    Google Scholar 

  • Takagi, K., Nakayama, T.: Respiratory discharge of the pons. Science 128, 1206 (1958).

    Google Scholar 

  • Wang, S.C., Ngai, S.H.: Respiration coordinating mechanism of the brain stem. A few controversial points. Ann. N.Y. Acad. Sci. 109, 550–559 (1963).

    Google Scholar 

  • Wilson, D.M.: The central nervous control of flight in a locust. J. exp. Biol. 38, 471–490 (1961).

    Google Scholar 

  • —: Neural operations in arthropod ganglia. In: “The neurosciences. Second study program”, pp. 397–409. Ed. by F.O. Schmitt. New York: Rockefeller University Press 1970.

    Google Scholar 

  • —, Wyman, R.J.: Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J. 5, 121–143 (1965).

    Google Scholar 

  • Woldring, S., Dirken, M.N.J.: Site and extension of bulbar respiratory center. J. Neurophysiol. 14, 227–241 (1951).

    Google Scholar 

  • Wright, S.: Applied physiology. Ninth edition. XVI-1190 pp. London: Oxford University Press 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants from Délégation générale à la Recherche scientifique et technique (6600431) and Centre national de la Recherche scientifique (ERA 233). We thank Dr. M.I. Cohen for his help in the english composition of the manuscript. J. Costa and F. Chansou are gratefully acknowledged for writing the respiratory unit (RSPUNIT) program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, F., Hugelin, A. & Vibert, J.F. Quantitative study of anatomical distribution of respiration related neurons in the pons. Exp Brain Res 16, 383–399 (1973). https://doi.org/10.1007/BF00233430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233430

Key words

Navigation