Skip to main content
Log in

Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Attempts were made to study differences in the relative effectiveness of different size ranges of motor axons to Renshaw cells by differential blocking of larger fibers of the gastrocnemius nerve in cats anesthetized with Nembutal.

  1. 1.

    Differential blocking of larger fibers in the nerve was successfully obtained by applying trapezoid wave current to the nerve.

  2. 2.

    It was shown that more than half (58.1%) of the Renshaw cells receive homogeneous inputs from a motor axon collaterals, 25.8% of the cell receive collateral inputs from a certain group of fibers, and 12.5% of the Renshaw cells were activated by “γ range” fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adal, M.N., Barker, D.: Intrafusal branching of fusimotor fibres. J. Physiol. (Lond.) 177, 288–299 (1965)

    Google Scholar 

  • Bessou, P., Emonet-Denand, P., Laporte, Y.: Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. J. Physiol. (Lond.) 180, 649–672 (1965)

    Google Scholar 

  • Boyd, I.A.: Signed contributions to the discussion on muscle spindles. In: Muscular afferents and motor control. Ed. by R. Granit. Stockholm: Almqvist & Wiksell 1966

    Google Scholar 

  • Curtis, D.R., Phillis, J.W., Watkins, J.C.: Cholinergic and noncholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961)

    Google Scholar 

  • Curtis, D.R., Ryall, R.W.: The synaptie excitation of Renshaw cells. Exp. Brain Res. 2, 81–96 (1966)

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.) 159, 461–478 (1961)

    Google Scholar 

  • Eccles, J.C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.) 126, 524–562 (1954)

    Google Scholar 

  • Ellaway, P.H.: Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and the spinal cat. J. Physiol. (Lond.) 216, 419–439 (1971)

    Google Scholar 

  • Frank, K., Fuortes, M.G.F.: Unitary activity of spinal interneurones of cats. J. Physiol. (Lond.) 131, 424–435 (1956)

    Google Scholar 

  • Haase, J., van der Meulen, J.P.: Effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurons. J. Neurophysiol. 24, 510–520 (1961)

    Google Scholar 

  • Haase, J., Vogel, B.: Direkte und indirekte Wirkungen supraspinaler Reizungen auf Renshaw-Zellen. Pflügers Arch. 325, 334–346 (1971)

    Google Scholar 

  • Henneman, E.: Organization of the spinal cord. In: Medical Physiology, 12th ed., vol. II, pp. 1717–1732. Ed. by V.B. Mountcastle. Saint Louis: C.V. Mosby 1968

    Google Scholar 

  • Kato, M., Fukushima, K.: Recurrent inhibition of γ motoneurons. J. Physiol. Soc. Japan 35, 504 (1973)

    Google Scholar 

  • Longo, V.G., Martin, W.R., Unna, K.R.: A pharmacological study on the Renshaw cell. J. Pharmacol. exp. Ther. 129, 61–68 (1960)

    Google Scholar 

  • MacLean, J.B., Leffman, H.: Supraspinal control of Renshaw cells. Exp. Neurol. 18, 94–104 (1967)

    Google Scholar 

  • Manfredi, M.: Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch. ital. Biol. 108, 52–71 (1970)

    Google Scholar 

  • Mendell, L.M., Wall, P.D.: Presynaptic hyperpolarization: a role for the fine afferent fibers. J. Physiol. (Lond.) 172, 274–294 (1964)

    Google Scholar 

  • Noth, J.: Récurrente Hemmung der Extensor-Fusimotoneurone? Pflügers Arch. 329, 23–33 (1971)

    Google Scholar 

  • Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946)

    Google Scholar 

  • Ryall, R.W., Piercey, M.F., Polosa, C., Goldfarb, J.: Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons. J. Neurophysiol. 35, 137–148 (1972)

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Haase, J.: Quantitative relation of Renshaw cell discharges to monosynaptic reflex height. Pflügers Arch. 332, 73–79 (1972)

    Google Scholar 

  • Sassen, M., Zimmermann, M.: Differential blocking of myelinated nerve fibres by transient depolarization. Pflügers Arch. 341, 179–195 (1973)

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Spinal motoneurons, interneurons and Renshaw cells. A Golgi study. Arch. ital. Biol. 104, 328–353 (1966)

    Google Scholar 

  • Willis, W.D.: The case for the Renshaw cell. Brain Behav. Evol. 4, 5–52 (1971)

    Google Scholar 

  • Wilson, V.J.: Regulation and function of Renshaw cell discharge. In: Muscular afferent and motor control. Ed. by R. Granit. Stockholm: Almqvist & Wiksell 1966

    Google Scholar 

  • Wilson, V.J., Talbot, W.H., Kato, M.: Inhibitory convergence upon Renshaw cells. J. Neurophysiol. 27, 1063–1079 (1964)

    Google Scholar 

  • Zimmermann, M.: Selective activation of C-fibers. Pflügers Arch. 301, 329–333 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Fukushima, K. Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat. Exp Brain Res 20, 135–143 (1974). https://doi.org/10.1007/BF00234008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234008

Key words

Navigation