Skip to main content
Log in

Ascending and descending components of the medial forebrain bundle in the rat as demonstrated by the horseradish peroxidase-blue reaction

I. Forebrain and upper brain stem

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The ascending and descending components of the medial forebrain bundle (MFB) were investigated by means of horseradish peroxidase (HRP) with a sensitive substrate. The HRP was injected iontophoretically into the MFB at various levels from the anterior commissure to the posterior hypothalamus. In order to prevent the diffusion of HRP to other brain areas, a double micropipette system was used. The descending components of the MFB are derived from (1) the anterior cingulate area, infra- or prelimbic area, and sulcal cortex, (2) the lateral septal nucleus and diagonal band, (3) the bed nucleus of the stria terminalis, (4) the paraventricular nucleus (5) the substantia innominata, (6) the amygdaloid complex (AM), (7) the ventromedial (VM) and dorsomedial (DM) hypothalamic nuclei, (8) the entopeduncular nucleus and (9) nucleus periventricularis stellatocellularis. The ascending components of the MFB originate in: (1) the medial preoptic nucleus, (2) the nucleus periventricularis stellatocellularis and rotundocellularis, (3) the posterior hypothalamic nucleus, (4) the parafascicular nucleus, (5) the ventral premammillary nucleus, (6) the substantia grisea periventricularis, (7) the lateral habenular nucleus, (8) the VM and DM, (9) the paratenial nucleus, (10) the AM and (11) the arcuate nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a:

nucleus accumbens

abl:

nucleus amygdaloideus basalis, pars lateralis

abm:

nucleus amygdaloideus basalis, pars medialis

ac:

nucleus amygdaloideus centralis

AC:

anterior cingulate area

al:

nucleus amygdaloideus lateralis

am:

nucleus amygdaloideus medialis

ar:

nucleus arcuatus

CC:

tractus corporis callosi

CSDV:

commissura supraoptica dorsalis, pars ventralis

DB:

diagonal band

DM:

nucleus dorsomedialis hypothalami

EP:

nucleus entopeduncularis

ha:

nucleus anterior hypothalami

hl:

nucleus lateralis hypothalami

hp:

nucleus posterior hypothalami

IL:

infralimbic area of frontal cortex

lh:

nucleus habenulae lateralis

LH1 :

medial forebrain bundle (MFB) at the level of commissura anterior

LH2 :

lateral preoptic area

LH3 :

MFB at the level of the nucleus anterior hypothalami

LH4 :

MFB at the level of the nucleus ventromedialis hypothalami

LH5 :

MFB at the level of the nucleus posterior hypothalami

MFB:

medial forebrain bundle

pf:

nucleus parafascicularis

PL:

prelimbic area of frontal cortex

pol:

nucleus preopticus lateralis

pom:

nucleus preopticus medialis

posc:

nucleus preopticus, pars suprachiasmatica

pt:

nucleus parataenialis

pv:

nucleus premamillaris ventralis

PV:

nucleus paraventricularis

pvs:

nucleus periventricularis stellatocellularis

pvr:

nucleus periventricularis rotundocellularis

SC:

sulcal cortex

SGPV:

substantia grisea periventricularis

SI:

substantia innominata

SL:

lateral septal nucleus

ST:

bed nucleus of stria terminalis

sum:

nucleus supramamillaris

TO:

tractus opticus

tmm:

nucleus medialis thalami, pars medialis

VM:

nucleus ventromedialis hypothalami

References

  • Aghajanian GK, Wong RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracer technique. Brain Res 122: 229–242

    Google Scholar 

  • Andén N-E, Dahlström A, Fuxe K, Larsson K, Oison L, Ungerstedt U (1966) Ascending monoamine neurons to telencephalon and diencephalon. Acta Physiol Scand 67: 313–326

    Google Scholar 

  • Bodkey M, Rethelyi M (1977) Dendritic arborization and axon trajectory of neurons in the hypothalamic arcuate nucleus of the rat. Exp Brain Res 28: 543–555

    Google Scholar 

  • Carter DA, Fibiger HC (1978) The projections of the entopeduncular nucleus and globus pallidus in the rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177: 113–124

    Google Scholar 

  • Crosby EC, Woodburne RT (1951) The mammalian midbrain and isthmus regions, Part II. The fiber connections. C. The hypothalamo-tegmental pathways. J Comp Neurol 94: 1–32

    Google Scholar 

  • Guillery RW (1957) Degeneration in the hypothalamic connections of albino rats. J Anat (Lond) 90: 350–360

    Google Scholar 

  • Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria terminalis and anterior commissura. J Comp Neurol 38: 127–163

    Google Scholar 

  • Gurdjian ES (1927) The diencephalon of the albino rat. Studies on the brain of the rat. J Comp Neurol 43: 1–114

    Google Scholar 

  • Hardy H, Heimer L (1977) A safer and more sensitive substitute for diaminobenzidine in the light microscopic demonstration of retrograde and anterograde axonal transport of HRP. Neurosci Lett 5: 235–240

    Google Scholar 

  • Humphrey J (1936) The telencephalon of the bat. I. The noncortical nuclear masses and certain pertinent fiber connections. J Comp Neurol 65: 603–711

    Google Scholar 

  • Ingram WR (1940) Nuclear organization and chief connections of the primate hypothalamus. Res Publ Ass Nerv Ment Dis 20: 195–244

    Google Scholar 

  • Kent DL, Sladek JR (1978) Histochemical, pharmacological and microspectrofluorometric analysis of new sites of serotonin localization in the rat hypothalamus. J Comp Neurol 180: 221–236

    Google Scholar 

  • König JFR, Klippel RA (1967) The rat brain; a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178: 225–254

    CAS  PubMed  Google Scholar 

  • Krieg WJS (1932) The hypothalamus of the albino rat. J Comp Neurol 55: 19–89

    Google Scholar 

  • Krieger MS, Conrad LC, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183: 785–816

    Google Scholar 

  • Kristensson K, Olsson Y, Sjöstrand J (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res 32: 399–406

    Google Scholar 

  • Kuypers HGJM, Maskey VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1: 9–14

    Google Scholar 

  • Larsen KD, McBride RL, (1979) The organization of Feline, entopeduncular nucleus projection; Anatomical studies. J Comp Neurol 184: 293–308

    Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176: 1416–1417

    Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain: As revealed by glyoxylic acid and fluorescence method. Acta Physiol Scand [Suppl] 412: 1–48

    Google Scholar 

  • McBride RL, Sutin J (1977) Amygdaloid and pontine projections to the ventromedial nucleus of the hypothalamus. J Comp Neurol 174: 377–396

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry; a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Mizuno N, Clemente CD, Sauerlaud EK (1969) Fiber projections from rostral basal forebrain structures in the cat. Exp Neurol 25: 220–237

    Google Scholar 

  • Nagy JH, Carter DA, Fibiger HC (1978) Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat; The GABA connection. Brain Res 158: 15–29

    Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain 81: 319–340

    Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Andersen E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–218

    Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper H et al. (eds) Reticular formation of the brain. Little & Brown, Boston, pp 3–29

    Google Scholar 

  • Norgren R (1976) Taste pathways of the hypothalamus and amygdala. J Comp Neurol 166: 19–30

    Google Scholar 

  • Olson L, Fuxe K (1971) On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation. Brain Res 28: 165–171

    Google Scholar 

  • Olson L, Fuxe K (1972) Further mapping out of central noradrenaline neuron system; Projections of the “subcoeruleus” area. Brain Res 43: 289–295

    Google Scholar 

  • Raisman G (1966) The connections of the septum. Brain 89: 317–348

    Google Scholar 

  • Sakumoto T, Tohyama M, Satoh K, Kimoto Y, Kinugasa T, Tanizawa O, Kurachi K, Shimizu N (1978) Afferent fiber connections from lower brain stem to hypothalamus studied by horseradish peroxidase method with special reference to noradrenaline innervation. Exp Brain Res 31: 81–94

    Google Scholar 

  • Sakumoto T, Tohyama M, Takahashi Y, Shiosaka S, Satoh K, Maeda T, Shimizu N (in press) (1979) Fine structure of the paraventriculo-spinal neurons as demonstrated by HRP-TMB technique. Acta Anat Jpn [Abstr]

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117: 305–312

    Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183: 689–709

    Google Scholar 

  • Scott JW, Leonard CM (1971) The olfactory connection of the lateral hypothalamus in the rat, mouse and hamster. J Comp Neurol 141: 355–374

    Google Scholar 

  • Segal M, Landis SC (1974) Afferents to the septal area of the rat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res 82: 263–268

    Google Scholar 

  • Shimizu N, Ohnishi S, Tohyama M, Maeda T (1974) Demonstration of the ascending projections from the locus coeruleus by degeneration silver method. Exp Brain Res 20: 181–192

    Google Scholar 

  • Swanson LW, Cowan WM (1975) A note on the connections and development of the nucleus accumbens. Brain Res 92: 324–330

    Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of septal region in the rat. J Comp Neurol 186: 621–656

    Google Scholar 

  • Szentágothai J, Flerko B, Mess B, Halasz B (1968) Experimental morphological study. In: Szentágothai J, Flerko B, Mess B, Halasz B (eds) Hypothalamic control of the anterior pituitary. Akademiai Kiado, Budapest, pp 2–105

    Google Scholar 

  • Tohyama M, Maeda T, Shimizu N (1974) Detailed noradenaline pathways of locus coeruleus neuron to the cerebral cortex with use of 6-hydroxydopa. Brain Res 79: 139–144

    Google Scholar 

  • Troiano R, Siegel A (1975) The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49: 161–173

    Google Scholar 

  • Van der Kar LD, Lorens SA (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and midbrain raphe nuclei. Brain Res 162: 45–54

    Google Scholar 

  • Wolf G, Sutin J (1966) Fiber degeneration after lateral hypothalamic lesions in the rat. J Comp Neurol 127: 137–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nomenclature used in this paper is according to König and Klippel's Stereotaxic Atlas (1967).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiosaka, S., Tohyama, M., Takagi, H. et al. Ascending and descending components of the medial forebrain bundle in the rat as demonstrated by the horseradish peroxidase-blue reaction. Exp Brain Res 39, 377–388 (1980). https://doi.org/10.1007/BF00239302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239302

Key words

Navigation