Skip to main content
Log in

Modification of the balance and gain of the vestibulo-ocular reflex in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The characteristics of the vestibulo-ocular reflex (VOR) of a normal cat can be modified in response to visual demands. Two aspects of the VOR are modifiable independently by a normal cat: the gain and the balance. An imbalance results in a spontaneous nystagmus and an asymmetric VOR. Neither the gain nor the balance of a dark-reared cat's VOR is susceptible to visual modification. A cat whose crossed visual pathways are severed at the level of the optic chiasm is able to modify the gain of the VOR but not its balance. Both dark-reared and split-chiasm cats have only very short-lasting optokinetic after-nystagmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visualvestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26: 463–485

    Google Scholar 

  • Berthoz A, Jeannerod M, Vital-Durand F, Oliveras JL (1975) Development of vestibulo-ocular responses in visually deprived kittens. Exp Brain Res 23: 425–442

    Google Scholar 

  • Cohen B, Uemura J, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus and optokinetic after-nystagmus. Equil Res 3: 88–93

    Google Scholar 

  • Cohen B, Henn V, Raphan T, Matsuo V (1978) The role of velocity storage in visual-vestibular interactions in humans and monkeys. Soc Neurosci Abstr 4: 488

    Google Scholar 

  • Collewijn H (1976) Impairment of optokinetic (after-)nystagmus by labyrinthectomy in the rabbit. Exp Neurol 52: 146–156

    Google Scholar 

  • Collewijn H, Kleinschmidt HJ (1975) Vestibulo-ocular and optokinetic reactions in the rabbit: changes during 24 h of normal and abnormal interaction. In: Lennestrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 477–483

    Google Scholar 

  • Courjon JH, Jeannerod J, Ossuzio I, Schmid R (1977) The role of vision in compensation of vestibulo-ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 29: 1–14

    Google Scholar 

  • Cynader M (1979) Competitive interactions in postnatal development of the kitten's visual system. In: Freeman RD (ed) Developmental neurobiology of vision. Plenum Press, New York, pp 109–120

    Google Scholar 

  • Dieringer N, Precht W (1979) Mechanisms of compensation for vestibular deficits in the frog. Exp Brain Res 36: 311–351

    Google Scholar 

  • Donaghy MJ (1980) The cat's vestibulo-ocular reflex. J Physiol (Lond) 300: 337–351

    Google Scholar 

  • Flandrin JM, Courjon JH, Jeannerod M (1979) Development of vestibulo-ocular response in the kitten. Neurosci Lett 12: 295–299

    Google Scholar 

  • Fuchs AF, Kimm J (1975) Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J Neurophysiol 38: 1140–1161

    Google Scholar 

  • Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol 21: 1068–1070

    CAS  PubMed  Google Scholar 

  • Gauthier GM, Robinson DA (1975) Adaptation of the human vestibulo-ocular reflex to magnifying lenses. Brain Res 92: 331–335

    Google Scholar 

  • Ghelarducci B, Ito M, Yagi N (1975) Impulse discharges from flocculus purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res 87: 66–72

    Google Scholar 

  • Gonshor A, Melvil Jones G (1971) Plasticity in the adult vestibulo-ocular reflex arc. Proc Can Fed Biol Soc 14: 11

    Google Scholar 

  • Gonshor A, Melvill Jones G (1976a) Short-term adaptive changes in the human vestibulo-ocular reflex arc. J Physiol (Lond) 256: 361–379

    Google Scholar 

  • Gonshor A, Melvill Jones G (1976b) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol (Lond) 256: 381–414

    Google Scholar 

  • Haddad GM, Robinson DA (1977) Gain and Bias of the vestibuloocular reflex are repaired by separate neural mechanisms in the cat. Invest Ophthalmol [Suppl] 16: 164

    Google Scholar 

  • Harris LR, Cynader M (1979a) Abnormalities in the vestibuloocular reflex and optokinetic nystagmus of dark-reared cats. Invest Ophthalmol [Suppl] 18: 263

    Google Scholar 

  • Harris LR, Cynader M (1979b) Attempts to modify the vestibuloocular reflex of normal and dark-reared cats. Soc Neurosci Abstr 5: 2642

    Google Scholar 

  • Harris LR, Cynader M (1981) The eye movements of the dark- reared cat. Exp Brain Res 44: 41–56

    Google Scholar 

  • Harris LR, Rauschecker J (1981) Auditory responses in the superior colliculus of binocularly deprived cats (in prep.)

  • Harris LR, Leporé F, Guillemot JP, Cynader M (1980) Abolition of optokinetic nystagmus in the cat. Science 210: 91–92

    Google Scholar 

  • Hassul M, Daniels PD, Kimm J (1976) Effects of bilateral flocculectomy on the vestibulo-ocular reflex in the chinchilla. Brain Res 118: 339–343

    Google Scholar 

  • Hoffmann KP, Behrend K, Schoppmann A (1977) Visual responses of neurons in the nucleus of the optic tract of visually deprived cats. Soc Neurosci Abstr 3: 1790

    Google Scholar 

  • Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40: 81–84

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1973) Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. Brain Res 60: 238–243

    Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1974) Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res 65: 170–174

    Google Scholar 

  • Keller EL, Daniels PD (1975) Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exp Neurol 46: 182–187

    Google Scholar 

  • Keller EL, Precht W (1978) Persistence of visual response in vestibular nucleus neurons in cerebellectomized cat. Exp Brain Res 32: 591–594

    Google Scholar 

  • Kornhuber HH (1966) Physiologie und Klinik des zentralvestibu- lären Systems. In: Berendes J, Link R, Zollner F (Hrsg) Handbuch der Hals-, Nasen- und Ohrenheilkunde, vol III/3. Thieme, Stuttgart, S 2150–2351

    Google Scholar 

  • Landers PH, Taylor A (1975) Transfer function analysis of the vestibulo-ocular reflex in the conscious cat. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 505–508

    Google Scholar 

  • Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in long term adaptive plasticity of vestibulo-ocular reflex. J Neurophysiol 43: 1725–1745

    Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin

    Google Scholar 

  • Melvill Jones G, Davies P (1976) Adaptation of cat vestibuloocular reflex to 200 days of optically reversed vision. Brain Res 103: 551–554

    Google Scholar 

  • Miles FA, Fuller JH (1974) Adaptive plasticity in the vestibuloocular response of the rhesus monkey. Brain Res 80: 512–516

    Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 997–1010

    Google Scholar 

  • Raphan T, Cohen B, Matsuo V (1977) A velocity-storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier/North Holland, Amsterdam, pp 37–47

    Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35: 229–248

    CAS  PubMed  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scieral search-coil in magnetic field. IEEE Trans Biomed Eng 10: 137–145

    CAS  PubMed  Google Scholar 

  • Robinson DA (1975) Oculomotor control signals. In: Lennestrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 337–374

    Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J Neurophysiol 39: 954–969

    Google Scholar 

  • Stone J (1966) The naso-temporal division of the cat's retina. J Comp Neurol 126: 585–600

    Google Scholar 

  • Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72: 213–224

    Google Scholar 

  • Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27: 523–538

    Google Scholar 

  • Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp Brain Res 30: 323–330

    Google Scholar 

  • Young LR, Henn VS (1974) Selective habituation of vestibular nystagmus by visual stimulation. Acta Otolaryngol (Stockh) 77: 159

    Google Scholar 

  • Young LR, Henn VS (1976) Selective habituation of vestibular nystagmus by visual stimulation in the monkey. Acta Otolaryngol (Stockh) 82: 165–171

    Google Scholar 

  • Zee DS, Yee RD, Robinson DA (1976) Optokinetic responses in labyrinthine-defective human beings. Brain Res 113: 423–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by USPHS grant EY02248 and grants from the M.R.C. (MT5201) and NSERC (A9949) of Canada

Dr. L. R. Harris was in receipt of a Wellcome travel grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, L.R., Cynader, M. Modification of the balance and gain of the vestibulo-ocular reflex in the cat. Exp Brain Res 44, 57–70 (1981). https://doi.org/10.1007/BF00238749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238749

Key words

Navigation