Skip to main content
Log in

Locomotion in adult cats with early vestibular deprivation: Visual cue substitution

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Four cats labyrinthectomized shortly after birth (DELAB) exhibited the classical vestibular syndrome and recovery, while their motor development was otherwise unimpaired. As adults, they were tested for visual vestibular substitution in a locomotor task with either orientation requirements (tilted platforms) or balance requirements (narrow platforms). Visual motion cues or static visual cues were controlled using normal or stroboscopic lighting, or darkness. Measurements of the average speed of locomotion showed that:

  • Although all cats increase their speed when more visual cues become available, a marked deficit occurs in darkness only in the DELAB cats.

  • With either vestibular cues alone or static visual cues alone, cats are able to reach the same level of performance in the tilted platform test, which suggests a total visual-vestibular interchangeability in orientation.

  • DELAB cats perform very poorly in the narrow rail test.

  • When continuous vision is allowed in the narrow rail test the DELABs' performance rises but does not match that of the control group.

  • A specific deficit in balance for the DELAB group is thus reduced by normal continuous vision as compared to stroboscopic vision, suggesting a significant, though imperfect, substitution of motion visual cues for the missing dynamic vestibular cues.

  • Dynamic visual cues play only a minor role in most situations, when locomotory speed is high.

This results support the view that both the vestibular and the visual system can subserve two distinct functions:

  • dynamic information may stabilize the stance in narrow unstable situations, during slow locomotion.

  • and static orientation cues may mainly control the direction for displacement.

Possible interactions between head positioning and body orientation in the DELAB cats are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello I, Rosatti G, Serra G, Tugnoli V, Manca M (1983) Static vestibulospinal influences in relation to different body tilts in man. Exp Neurol 79/1: 18–26

    Google Scholar 

  • Amblard B, Crémieux J (1976) Rôle de l'information visuelle du mouvement dans le maintien de l'équilibre postural chez l'homme. Agressologie 17C: 25–36

    Google Scholar 

  • André-Thomas (1940) Equilibre et équilibration. Masson, Paris 567 p

    Google Scholar 

  • Bach y Rita P (1980) Brain plasticity as a basis for therapeutic procedures. In: Bach y Rita P (ed) Recovery of function: theoretical considerations for brain injury rehabilitation. Hans Huber Publishers, Berne Stuttgart Vienne, pp 225–263

    Google Scholar 

  • Bischof N (1974) Optic vestibular orientation to the vertical. In: Kornhuber HH (ed) Handbook of sensory physiology. Vestibular system. Vol 6. Part II. Springer, Berlin Heidelberg New York, pp 155–190

    Google Scholar 

  • Blakemore C, Papaioannou J (1974) Does the vestibular apparatus play a role in the development of the visual system. J Physiol (Lond) 236: 373–385

    Google Scholar 

  • Cazin L, Precht W, Lannou J (1980) Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat. Pflügers Arch 384: 19–29

    Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973) Mechanisms underlying recovery of eye-head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18: 548–562

    Google Scholar 

  • Dow RS (1938) The effects of unilateral and bilateral labyrinthectomy in monkey, baboon and chimpanzee. Am J Physiol 121: 392–399

    Google Scholar 

  • Ehrhardt KJ, Wagner A (1970) Labyrinthine and neck reflexes recorded from spinal single motoneurons in the cat. Brain Res 19: 87–104

    Google Scholar 

  • Fregly AR (1974) Vestibular ataxia and its measurement in man. In: Kornhuber HH (ed) Handbook of sensory physiology. Vestibular system. Vol 6. Part II. Springer, Berlin Heidelberg New York, pp 321–360

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Allen and Unwin, London, pp 31–46

    Google Scholar 

  • Hein A, Vital-Durand F, Salinger W, Diamond R (1979) Eye movements initiate visual-motor development in the cat. Science 204: 1321–1322

    Google Scholar 

  • Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Prog Bull 18/4: 459–651

    Google Scholar 

  • Igarashi M (1974) Squirrel monkey platform runway test. Acta Otolaryng 77: 284–288

    Google Scholar 

  • Igarashi M, Watanabe T, Maxian PM (1970) Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta Otolaryng 69: 247–253

    Google Scholar 

  • Lacour M, Xerri C, Hugon M (1978) Muscle responses and monosynaptic reflexes in falling monkey. Role of the vestibular system. J Physiol (Paris) 74: 427–438

    Google Scholar 

  • Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Percept Psychophys 15: 529–532

    Google Scholar 

  • Lestienne F, Soechting J, Berthoz A (1977) Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28: 363–384

    Google Scholar 

  • Lindsay KW, Roberts TDM, Rosenberg JR (1976) Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. J Physiol (Lond) 261/3: 583–601

    Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin, 740 p

    Google Scholar 

  • Manzoni D, Pompeiano O, Stampacchia G (1979) Tonic cervical influences on posture and reflex movements. Arch Ital Biol 117: 81–110

    Google Scholar 

  • Marchand A, Amblard B (1978) Postural control in normal and neonatally bilabyrinthectomized cats. Neurosci Lett Suppl 1: S458

    Google Scholar 

  • Martin JP (1965) Tilting reactions and disorders of the basal ganglia. Brain 88: 855–874

    Google Scholar 

  • Mc Nally WJ (1933) Experiments demonstrating the interaction of the semicircular canals and the utricles. Trans Am Acad Ophtalmol Oto-Laryng 37: 265–274

    Google Scholar 

  • Money KE, Scott JW (1962) Functions of separate sensory receptors of nonauditory labyrinth of the cat. Am J Physiol 202: 1211–1220

    Google Scholar 

  • Nakao C, Brookhart JM (1967) Effects of labyrinthine and visual deprivation on postural stability. The Physiologist 10: p 259

    Google Scholar 

  • Putkonen PTS, Courjon JH, Jeannerod M (1977) Compensation of postural effects of hemilabyrinthectomy in the cat. A sensory substitution process? Exp Brain Res 28: 249–257

    Google Scholar 

  • Rademaker GGJ (1935) Réactions labyrinthiques et équilibre. L'ataxie labyrinthique. Masson, Paris, 262 p

    Google Scholar 

  • Roberts TDM (1975) The behavioural vertical. Fortschr Zool 23/1: 192–198

    Google Scholar 

  • Schäfer KP, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Handbook of sensory physiology, Vestibular system. Vol 6. Part II. Springer, Berlin Heidelberg New York, pp 463–490

    Google Scholar 

  • Schöne H (1964) On the role of gravity in human spatial orientation. Aerospace Med 35: 764–772

    Google Scholar 

  • Soechting JF, Berthoz A (1979) Dynamic role of vision in the control of posture in man. Exp Brain Res 36: 551–561

    Google Scholar 

  • Talbott RE, Brookhart JM (1980) A predictive model study of the visual contribution to canine postural control. Am J Physiol 239: R80-R92

    Google Scholar 

  • Vidal PP, Lacour M, Berthoz A (1979) Contribution of vision to muscle responses in monkey during free fall: visual stabilization decreases vestibular-dependant responses. Exp Brain Res 37: 241–252

    Google Scholar 

  • Villablanca JR, Olmstead CE (1979) Neurological development of kittens. Develop Psychobiol 12/2: 101–127

    Google Scholar 

  • Von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Wechselwirkung zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37: 464–476

    Google Scholar 

  • Watt DGD (1976) Responses of cats to sudden falls: an otolithoriginating reflex assisting landing. J Neurophysiol 39: 257–265

    Google Scholar 

  • Windle WF, Fish MW (1932) The development of the vestibular righting reflex in the cat. J Comp Neurol 54: 85–96

    Google Scholar 

  • Xerri C, Lacour M (1980) Compensation des déficits posturaux et cinétiques après neurectomie vestibulaire unilatérale chez le chat. Rôle de l'activité sensorimotrice. Acta Otolaryng 90: 414–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, A.R., Amblard, B. Locomotion in adult cats with early vestibular deprivation: Visual cue substitution. Exp Brain Res 54, 395–405 (1984). https://doi.org/10.1007/BF00235464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235464

Key words

Navigation