Skip to main content
Log in

The distribution and origin of the ipsilateral descending limb of the brachium conjunctivum. An autoradiographic and horseradish peroxidase study in the rat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The distribution, organization and origin of the ipsilateral descending limb of the Brachium Conjunctivum (B.C.), have been studied in the rat by using anterograde and retrograde tracing techniques. After injections of tritiated leucine/proline into the lateral cerebellar nucleus, covering both its medial part, corresponding to the dorsolateral hump (DLH) of Goodman et al. (1963) and its lateral part, (designated here as the lateral dentate, LD), and the neighboring interposed nucleus (NI), emerging fibres are numerous and leave laterally from the B.C. On the contrary, injections restricted to LD reveal very few such fibers. Within the lateral parvocellular reticular formation (LPRF) terminal labelling is heavy, and moderate to sparse within the adjacent trigeminal complex. Rostro-caudally, silver grain accumulation within the LPRF extends from the level of the motor trigeminal nucleus (VM) to the pyramidal decussation, exhibiting a cephalocaudal decrease of grain density. Within the trigeminal complex, labelling occurs in the caudal VM, the dorsal portion of the principal sensory nucleus, and within and around the trigeminal spinalis oralis. In addition, the area surrounding the VM (in part corresponding to the supratrigeminal region of Lorente de Nó 1922, 1933) is moderately labelled. After injections of HRP into various levels of the ipsilateral descending B.C.'s projection field, retrogradely labelled cells are numerous within the DLH. A slightly lesser amount of labelled cells are found in the lateral half of the NI, primarily concerning the nucleus interpositus posterior. Within the LD, only a few labelled cells are observed: these are mainly restricted to the dorsal portion at rostral levels of the nucleus. The results obtained by both the anterograde and retrograde studies suggest an absence of a topographic organization within this descending B.C. component. The possible functional meaning of these results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B.C.:

Brachium conjunctivum

DLH:

Dorsolateral hump

FTN:

Fibers of the trigeminal nerve

IO:

Inferior olive

LD:

Lateral dentate

LPRF:

Lateral parvocellular reticular formation

NI:

Interposed nucleus

NIA:

Nucleus interpositus anterior

NIP:

Nucleus interpositus posterior

NVII:

Facial nerve

PD:

Pyramidal decussation

TB:

Trapezoid body

VM:

Trigeminal motor nucleus

VPS:

Trigeminal principal sensory nucleus

VSC:

Trigeminal spinalis caudalis subnucleus

VSI:

Trigeminal spinalis interpolaris subnucleus

VSO:

Trigeminal spinalis oralis subnucleus

VII:

Facial nucleus

XII:

Hypoglossal nucleus

References

  • Achenbach KE, Goodman DC (1968) Cerebellar projection to pons, medulla and spinal cord in the albino rat. Brain Behav Evol 1: 43–57

    Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the vestibulocerebellum onto the vestibular nuclei in the cat. Arch Ital Biol 105: 441–479

    Google Scholar 

  • Angaut P, Cicirata F (1982) Cerebello-olivary projections in the rat. An autoradiographic study. Brain Behav Evol 21: 24–33

    Google Scholar 

  • Brodal A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. The Henderson Trust Lecture. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Brodal A (1981) Neurological Anatomy in Relation to Clinical Medicine. Oxford Univ Press, New York Oxford

    Google Scholar 

  • Carpenter MB, Nova HR (1960) Descending division of the brachium conjunctivum in the cat: a cerebellar reticular system. J Comp Neurol 114: 294–305

    Google Scholar 

  • Carrea RME, Mettler FA (1954) The anatomy of the primate brachium conjunctivum and associated structures. J Comp Neurol 101: 565–690

    Google Scholar 

  • Chan-Palay V (1977) Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cohen D, Chambers WW, Sprague JM (1958) Experimental study of the efferent projections from the cerebellar nuclei to the brain stem of the cat. J Comp Neurol 109: 233–259

    Google Scholar 

  • Eller T, Chan-Palay V (1976) Afferents to the cerebellar lateral nucleus. Evidence from retrograde transport of horseradish peroxidase after pressure injections through micropipettes. J Comp Neurol 166: 285–305

    Google Scholar 

  • Faull RLM (1978) The cerebellofugal projections in the brachium conjunctivum of the rat. II. The ipsilateral and contralateral descending pathways. J Comp Neurol 178: 519–536

    Google Scholar 

  • Fukushima K, Peterson BW, Uchino Y, Coulter JD, Wilson VL (1977) Direct fastigiospinal fibers in the cat. Brain Res 126: 538–542

    Google Scholar 

  • Fukushima T, Kerr FW (1979) Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: Presence of gelatinosa neurons with thalamic connections. J Comp Neurol 183: 169–184

    Google Scholar 

  • Gehuchten A van (1905) Les pédoncules cérébelleux supérieurs. Le Névraxe 7: 29–86

    Google Scholar 

  • Goldberg LJ, Nakamura Y (1968) Lingually induced inhibition of masseteric motoneurons. Experientia 24: 371–373

    Google Scholar 

  • Goodman DC, Hallett RE, Welch RB (1963) Patterns of localization in cerebellar cortico-nuclear projections of the albino rat. J Comp Neurol 121: 51–67

    Google Scholar 

  • Haroian AJ, Massopust LC, Young PA (1981) Cerebello-thalamic projections in the rat: An autoradiographic and degeneration study. J Comp Neurol 197: 217–236

    Google Scholar 

  • Jansen J (1956) On the efferent connections of the cerebellum. In: Arïens Kappers J (ed) Progress in Neurobiology. Elsevier, Amsterdam, pp 232–239

    Google Scholar 

  • Jerge CR (1963) The function of the nucleus supratrigeminalis. J Neurophysiol 26: 393–402

    Google Scholar 

  • Kidokoro Y, Kabota K, Shuto S, Sumino R (1968) Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from the inferior dental nerve. J Neurophysiol 31: 709–716

    Google Scholar 

  • Korneliussen HK (1968) On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch 10: 109–122

    Google Scholar 

  • Lorente de Nó R (1922) Contribución al conocimiento del nervio trigémino. Libro en honor de Dr S Ramón y Cajal, Móya, Madrid 2: 13–39

    Google Scholar 

  • Lorente de Nó R (1933) Vestibulo-ocular reflex arc. AMA Arch Neurol Psychiat 30: 245–291

    Google Scholar 

  • Mc Masters RE, Russell GV (1958) Efferent pathways from the deep cerebellar nuclei of the cat. J Comp Neurol 110: 205–220

    Google Scholar 

  • Marchi V (1891) Sull'origine e decroso dei peduncoli cerebellar e sui loro rapporti cogli altri centri nervosi. Riv Sper Freniat 17: 357–358

    Google Scholar 

  • Martin GF, Linauts M, Walter JM (1977) The nucleus corporis pontobulbaris of the north american opossum. J Comp Neurol 175: 345–372

    Google Scholar 

  • Matsushita M, Hosoya Y (1978) The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat. A study with the horseradish peroxidase technique. Brain Res 142: 237–248

    Google Scholar 

  • Mehler WR (1965) A comparison of cerebellar projections to vestibular, reticular and diencephalic nuclei in the monkey, cat and rat. Proc 8th Int Congr Anat Wiesbaden, Germany, pp 77 (Abstract)

  • Mehler WR (1967) Double descending pathways originating from the superior cerebellar peduncle. An example of neural species differences. Anat Rec 157: 374 (Abstract)

    Google Scholar 

  • Mehler WR (1969) Some neurological species differences a posteriori. Ann Ny Acad Sci 167: 424–468

    Google Scholar 

  • Mehler WR, Vernier VG, Nauta WJH (1958) Efferent projections from dentate and interpositus nuclei in primates. Anat Rec 130: 430–431 (Abstract)

    Google Scholar 

  • Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Mizuno N (1970) Projection fibers from the main sensory trigeminal nucleus and the supratrigeminal region. J Comp Neurol 139: 457–472

    Google Scholar 

  • Mizuno N, Konishi A, Sato M (1975) Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase. J Comp Neurol 164: 105–116

    Google Scholar 

  • Mussen AT (1927) Experimental investigations on the cerebellum. Brain 50: 313–349

    Google Scholar 

  • Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92: 401–413

    Google Scholar 

  • Orestano F (1901) Le vie cerebellari efferenti. Riv Patol Nerv Ment 6: 49–69

    Google Scholar 

  • Osen KK (1972) The projection of the cochlear nuclei to the inferior colhculus in the cat. J Comp Neurol 144: 355–372

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1967) A stereotaxic atlas of the rat brain. Plenum Press, New York London

    Google Scholar 

  • Porter R (1967a) The synaptic basis of a bilateral lingualhypoglossal reflex in cats. J Physiol (Lond) 190: 611–627

    Google Scholar 

  • Porter R (1967b) Cortical actions on hypoglossal motoneurons in cats: A proposed role for a common internuncial cell. J Physiol (Lond) 193: 295–308

    Google Scholar 

  • Ramón y Cajal S (1903) La doble via descendente nacida del pedunculo cerebeloso superior. Trab Lab Invest Biol Univ Madr 2: 23–29

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du Système Nerveux de l'Homme et des Vertébrés. II Maloine, Paris

    Google Scholar 

  • Rand RW (1954) An anatomical and experimental study of the cerebellar nuclei and their efferent pathways in the monkey. J Comp Neurol 101: 167–224

    Google Scholar 

  • Ranson SW, Ingram WR (1932) The diencephalic course and termination of the medial lemniscus and brachium conjunctivum. J Comp Neurol 56: 257–275

    Google Scholar 

  • Rasmussen AT (1933) Origin and course of the fasciculus uncinatus (Russell) in the cat, with observations on other tracts arising from the cerebellar nuclei. J Comp Neurol 57: 165–197

    Google Scholar 

  • Smith RL (1973) The ascending fiber projections from the principal sensory trigeminal nucleus in the rat. J Comp Neurol 148: 423–446

    Google Scholar 

  • Uemura-Sumi M, Takahashi O, Matsushima R, Takata M, Yasui Y, Mizuno N (1982) Localization of masticatory motoneurons in the trigeminal motor nucleus of the guinea pig. Neurosci Lett 29: 219–224

    Google Scholar 

  • Valverde F (1962) Reticular formation of the albino rats brain stem; cyto-architecture and corticofugal connections. J Comp Neurol 119: 25–33

    Google Scholar 

  • Watson CRR, Switzer RC III (1978) Trigeminal projections to cerebellar tactile areas in the rat. Origin mainly from n.interpolaris and n.principalis, Neurosci Lett 10: 77–82

    Google Scholar 

  • Watt CB, Mihailoff GA (1983) The cerebellopontine system in the rat. I. Autoradiographic studies. J Comp Neurol 215: 312–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was submitted as partial fulfillment for the degree of Doctorat de 3ème cycle at the Université Pierre et Marie Curie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodson, W., Angaut, P. The distribution and origin of the ipsilateral descending limb of the brachium conjunctivum. An autoradiographic and horseradish peroxidase study in the rat. Exp Brain Res 56, 167–182 (1984). https://doi.org/10.1007/BF00237454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237454

Key words

Navigation