Skip to main content
Log in

Differential pulse voltammetry in vivo with working carbon fiber electrodes: 5-hydroxyindole compounds or uric acid detection?

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Differential pulse voltammetry was performed in rats chronically implanted with carbon fiber electrodes in the caudate (n.Cd) and raphe dorsalis (n.RD) nuclei. The electrochemical signal obtained at the +300 mV potential (peak 3) in animals implanted for more than one week (long term chronic conditions, >7 days) could be dependent upon the extracellular fraction of 5-hydroxyindolacetic acid (5-HIAA) since a single injection of Pargyline is sufficient to suppress it in n.Cd and n.RD. This result was obtained despite the tendency of Pargyline to increase n.Cd and n.RD endogenous concentrations of Uric Acid (UA) measured by High Performance Liquid Chromatography (HPLC). In contrast, in animals implanted for less than one week (short term chronic conditions, <7 days) peak 3 recorded in the same structure could be dependent upon extracellular fractions of 5-HIAA and UA since consecutive injections of Pargyline and Allopurinol are necessary to suppress this signal. The source of extracellular UA measured in brain by voltammetry, in such short term chronic conditions, might result from surgical trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albery WJ, Fillenz M, O'Neill RD (1983) The compartment model for chronically implanted voltammetric electrodes in the rat brain. Neurosci Lett 38: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Al Khalidi UAS, Chaglassian TH (1965) The species distribution of xanthine oxidase. J Biochem 97: 318–320

    CAS  Google Scholar 

  • Auer L, Holzer H, Tritthart H, Gell G (1978) Azotaemia in severe head injury central dysregulation or renal failure? Acta Neurochir 41: 355–361

    Article  CAS  Google Scholar 

  • Baumann PA, Waldmeier PC (1984) Negative feedback control of serotonin release in vivo: comparison of 5-hydroxyindolacetic acid levels measured by voltammetry in conscious rats and by biochemical techniques. Neuroscience 11: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Brazell MP, Marsden CA (1982) Differential pulse voltammetry in the anesthetized rat: identification of ascorbic acid, catechol and indoleamine oxidation peaks in the striatum and frontal cortex. Br J Pharmacol 75: 539–547

    PubMed  CAS  Google Scholar 

  • Buda M, Gonon F, Cespuglio R, Jouvet M, Pujol JF (1980) Mesure voltamétrique in vivo de l'acide ascorbique et du DOPAC dans le striatum du rat et du cobaye. C R Acad Sci (Paris) 290: 431–434

    CAS  Google Scholar 

  • Cespuglio R, Faradji H, Riou F, Buda M, Gonon F, Pujol JF, Jouvet M (1981a) Differential pulse voltammetry in brain tissue. I. Detection of 5-hydroxyindoles in the rat striatum. Brain Res 223: 299–311

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R, Faradji H, Riou F, Buda M, Gonon F, Pujol JF, Jouvet M (1981b) Different pulse voltammetry in brain tissue. II. Detection of 5-hydroxyindolacetic acid in the rat striatum. Brain Res 223: 299–311

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R, Faradji H, Hahn Z, Jouvet M (1984) Voltammetric detection of brain 5-hydroxyindolamines by means of electrochemically treated carbon fibre electrodes: chronic recordings for up to one month with movable cerebral electrodes in the sleeping or waking rat. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. Wiley and Sons Ltd., Chichester IBRO Handbook series, Vol 6, pp 173–191

    Google Scholar 

  • Cespuglio R, Gharib A, Sarda N, Chastrette N, Faradji H, Delobel B (1985) Voltamétrie impulsionnelle différentielle: mise au point concernant la mesure des composés 5-hydroxyindols et de l'acide urique au niveau du cerveau. C R Acad Sci (Paris) 301: 817–822

    CAS  Google Scholar 

  • Crespi F, Cespuglio R, Jouvet M (1983) Differential pulse voltammetry in brain tissue: mapping of the rat serotoninergic raphé nuclei by electrochemical detection of 5-HIAA. Brain Res 270: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Crespi F, Sharp T, Maidment N, Marsden C (1983) Differential pulse voltammetry in vivo evidence that uric acid contributes to the indole oxidation peak. Neurosci Lett 43: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Echizen H, Freed CR (1983) In vivo electrochemical detection of extraneuronal 5-hydroxyindole acetic acid and norepinephrin in the dorsal raphé nucleus of urethane-anesthetized rats. Brain Res 277: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C, West KA (1971) Alterations in intracranial pressure, blood-brain barrier and brain edema after subchronic implantation of a cannula into the brain of conscious animals. Acta Physiol Scand 82: 527–531

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt GA, Oke AF, Nagy G, Moghaddam B, Adams RN (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290: 390–395

    Article  PubMed  CAS  Google Scholar 

  • Gharib A, Sarda N, Chabannes B, Cronenberger L, Pacheco H (1982) The regional concentration of S-adenosyl L-methionine, S-adenosyl homocysteine and adenosine in rat brain. J Neurochem 38: 810–815

    Article  PubMed  CAS  Google Scholar 

  • Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the rat neostriatum: dopamine or DOPAC? Nature 286: 902–904

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Curzon G (1968) Decrease of 5-hydroxytryptamine in brain provoked by hydrocortisone and its prevention by allopurinol. Nature 220: 1095–1097

    Article  PubMed  CAS  Google Scholar 

  • Hahn Z, Cespuglio R, Faradji H, Jouvet M (1985) Factors influencing the properties of voltammetric carbon fibre electrodes: the importance of the pH of the medium used for the electrical treatment and of the resin coating of the fibres. J Biochem Biophys Meth 11: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Kela V, Vijayvargiya R, Trivedi CP (1980) Inhibitory effects of methylxanthines on the activity of xanthine oxidase. Life Sci 27: 2109–2119

    Article  PubMed  CAS  Google Scholar 

  • Lesch M, Nyhan WC (1964) A familial disorder of uric acid metabolism and central nervous system function. Am J Med 36: 361–370

    Article  Google Scholar 

  • Miyazaki H, Matsunaga Y, Yoshida K, Arakawa S, Hashimoto M (1983) Simultaneous determination of plasma and urinary uric acid, xanthine, hypoxanthine, allopurinol, oxipurinol, orotic acid, orotidine and creatinine by high-performance liquid chromatography. J Chromatogr 274: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Mueller K, Palmour R, Andrews CD, Knott PJ (1985) In vivo voltammetric evidence of production of uric acid by rat caudate. Brain Res 335: 231–235

    Article  PubMed  CAS  Google Scholar 

  • O'Neill RD, Fillenz M, Grunewald RA, Bloomfield MR, Albery WY, Jamieson CM, Williams JH, Gray JA (1984) Voltammetric carbon paste electrodes monitor uric acid and not 5-HIAA at the 5-hydroxyindole potential in the rat brain. Neurosci Lett 45: 39–46

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1983) The rat brain in stereotaxic coordinates. Academic Press, New York Paris London

    Google Scholar 

  • Rivot JP, Ory-Lavollee L, Chiang CY (1983) Differential pulse voltammetry in the dorsal horn of the spinal cord of the anesthetized rat: are the voltammograms related to 5-HT and/or to 5-HIAA? Brain Res 275: 311–319

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Serrano A, Rivot JP, Nishikawa T (1984) Inhibitory GABAergic influence on striatal serotoninergic transmission exerted in the dorsal raphé as revealed by in vivo voltammetry. Brain Res 305: 343–352

    Article  PubMed  CAS  Google Scholar 

  • Schatz RA, Vunnam CR, Sellinger OZ (1977) Species and tissue differences in the catabolism of S-Adenosyl-L-Homocysteine: a quantitative, chromatographic study. Life Sci 20: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Skjoto J, Aakessan I, Os I, Kjeldsen SE, Elde I, Leren P (1984) Increased plasma vasopressin and serum uric acid in the low renin type of essential hypertension. Acta Med Scand 215: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1981) Physiological roles for adenosine and adenosine 5'-triphosphate in the nervous system. Neuroscience 6: 523–555

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC (1984) Determination of normetanephrine, 3-4-dihydroxyphenylethyleneglycol and 3-methoxy-4-hydroxyphenylethyleneglycol in rat brain by high-performance liquid chromatography with electrochemical detection and effects of drugs on regional concentrations. J Neurochem 42: 934–942

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom T, Sharp T, Marsden CA, Ungersted U (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem 41: 1769–1773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cespugli, R., Sarda, N., Gharib, A. et al. Differential pulse voltammetry in vivo with working carbon fiber electrodes: 5-hydroxyindole compounds or uric acid detection?. Exp Brain Res 64, 589–595 (1986). https://doi.org/10.1007/BF00340496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340496

Key words

Navigation