Skip to main content
Log in

Origin of leucine-enkephalin fibers and their two main afferent pathways in the bed nucleus of the stria terminalis in the rat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The destruction of th central amygdaloid nucleus (Ce), which contains a large group of neurons with leucine-enkephalin (L-ENK)-like immunoreactivity (L-ENKI), resulted in a marked ipsilateral reduction of these fibers in the bed nucleus of the stria terminalis (BST) suggesting that L-ENKI neurons in the Ce project ipsilaterally to the BST. This was supported by the finding that injection of biotin-wheat germ agglutinin into the BST labeled many neurons in the Ce. Simultaneous staining with antiserum showed that some of these neurons are L-ENKI. The L-ENKI fibers from the Ce reach the BST via two pathways; one from the ventral amygdalofugal pathway (VA), which terminate in the ventral subdivision of the BST pars lateralis (BSTL), and the other from the stria terminalis (ST), which terminates in the lateral subdivision of the BSTL, because (1) accumulation of L-ENKI structures appeared in the axons of these two systems on the amygdaloid side, (2) transection or destruction of the ST alone caused only a slight reduction of ENKI fibers in the lateral subdivision of the BSTL ipsilaterally and (3) transection or destruction of VA alone markedly reduced the number of L-ENKI fibers in the ventral subdivision of the ipsilateral BSTL. Thus, the VA L-ENKI fiber system is the major source of L-ENKI fibers in the ventral subdivision, while the ST L-ENKI fiber system is a minor source of the L-ENKI fibers in the lateral subdivision. The presence of an intrinsic L-ENKI system in the BST which may innervate the lateral subdivision was also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ac:

anterior commissure

AHy:

anterior hypothalamic nucleus

AM:

anteromedial thalamic nucleus

AV:

anteroventral thalamic nucleus

BST:

bed nucleus of stria terminalis

BSTL:

BST pars lateralis

BSTM:

BST pars medialis

Ce:

central amygdaloid nucleus

f:

fornix

GP:

globus pallidus

HDB:

horizontal limb of diagonal band of Broca

ic:

internal capsule

l:

lateral subdivision of the BSTL

LH:

lateral hypothalamus

LPO:

lateral preoptic area

LS:

lateral septal nucleus

m:

medial subdivision of the BSTL

Mfb:

medial forebrain bundle

MPO:

medial preoptic area

MS:

medial septal nucleus

ox:

optic chiasma

Re:

reuniens thalamic nucleus

Rt:

reticular thalamic nucleus

SI:

substantia innominata

sm:

stria medularis thalami

st:

stria terminalis

v:

ventral subdivision of the BSTL

va:

ventral amygdalofugal pathway

VDB:

vertical limb of diagonal band of Broca

VP:

ventral pallium

2n:

optic nerve

3v:

third ventricle

References

  • Brodal A (1947) The amygdaloid nucleus in the rat. J Comp Neurol 87: 1–16

    Google Scholar 

  • Coons AH (1958) Fluorescent antibody method. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 399–422

    Google Scholar 

  • Cowan M, Raisman G, Powell TPS (1965) The connections of the amygdala. J Neurol Neurosurg Psychiatry 28: 137–151

    Google Scholar 

  • Dahlstrøm A (1968) Effect of colchicine on transport of amine storage granules in sympathetic nerve of rat. Eur J Pharmacol 5: 111–112

    Google Scholar 

  • Eiden LE, Hökfelt T, Brownstein MJ, Palkovits M (1985) Vasoactive intestinal polypeptide afferents to the bed nucleus of the stria terminalis in the rat: an immunohistochemical and biochemical study. Neuroscience 15: 999–1013

    Google Scholar 

  • Elde R, Hökfelt T, Johansson O, Terenius L (1976) Immunohis-tochemical studies using antibodies to leu-enkephalin: initial observation on the nervous system of the rat. Neuroscience 1: 349–355

    Google Scholar 

  • Finley JCM, Maderut JL, Petrusz P (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198: 541–565

    Google Scholar 

  • Hökfelt T, Elde R, Johansson O, Terenius L, Stein L (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system. Neurosci Lett 5: 25–31

    Google Scholar 

  • Inagaki S, Kawai Y, Matsuzaki T, Shiosaka S, Tohyama M (1983) Precise terminal fields of the descending somatostatinergic neuron system from the amygdaloid complex of the rat. J Hirnforsch 24: 345–356

    Google Scholar 

  • Kawai Y, Inagaki S, Shiosaka S, Senba E, Hara Y, Sakanaka M, Takatsuki K, Tohyama M (1982) Long descending projections from amygdaloid somatostatin-containing cells to the lower brain stem. Brain Res 239: 603–607

    Google Scholar 

  • Khachaturian H, Lewis ME, Watson SJ (1983) Enkephalin system in diencephalon and brainstem of the rat. J Comp Neurol 220: 310–320

    Google Scholar 

  • König JFR, Klippel RA (1967) The rat brain: asterotaxic atlas of the forebrain and lower brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Krettek JE, Price JL (1978a) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178: 225–254

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978b) A description of the amygdaloid complex in the rat and cat, with observations on intraamygdaloid axonal connections. J Comp Neurol 178: 255–280

    Google Scholar 

  • Kreutzberg G (1969) Neuronal dynamics and flow. IV. Blockage of intraaxonal enzyme transport by colchicine. Proc Natl Acad Sci USA 62: 722–728

    Google Scholar 

  • Mesulam M-M (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction products with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Moga MM, Gray TS (1985) Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J Comp Neurol 241: 275–284

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1: 1242–1259

    CAS  PubMed  Google Scholar 

  • Sakanaka M, Shiosaka S, Takatsuki K, Inagaki S, Takagi H, Senba E, Kawai Y, Matsuzaki T, Tohyama M (1981) Experimental immunohistochemical studies on the amygdalofugal peptidergic (substance P and somatostatin) fibers in the stria terminalis of the rat. Brain Res 221: 231–242

    Article  CAS  PubMed  Google Scholar 

  • Senba E, Shiosaka S, Hara Y, Inagaki S, Kawai Y, Takatsuki K, Sakanaka M, Takagi H, Minagawa H, Tohyama M (1982) Ontogeny of leucine-enkephalin system of the rat: immunohistochemical analysis. I. Lower brain stem. J Comp Neurol 203: 173–188

    Google Scholar 

  • Shiosaka S, Sakanaka M, Inagaki S, Senba E, Hara Y, Takatsuki K, Takagi H, Kawai Y, Tohyama M (1983) Putative neurotransmitters in the amygdaloid complex with special reference to peptidergic pathways. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 359–389

    Google Scholar 

  • Shiosaka S, Shibasaki T, Tohyama M (1984) Bilateral α-melanocyte stimulating hormonergic fiber system zona incerta to cerebral cortex: combined retrograde axonal transport and immunohistochemical study. Brain Res 309: 350–353

    Google Scholar 

  • Shiosaka S, Shimada S, Tohyama M (1986a) Sensitive doublelabeling technique of retrograde biotinized tracer (biotinWGA) and immunocytochemistry: light and electron microscopic analysis. J Neurosci Methods 16: 9–18

    Google Scholar 

  • Shiosaka S, Tohyama M (1986b) Immunohistochemical techniques. In: Emson PC, Rosser M, Tohyama M (eds) Peptides and neurological disease. Prog Brain Res 66: 3–32

  • Uhl GR, Kuhar MJ, Snyder SH (1978) Enkephalin-containing pathway: amygdaloid efferents in the stria terminalis. Brain Res 149: 223–228

    Google Scholar 

  • Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232: 255–270

    Google Scholar 

  • Woodhams PL, Roberts GW, Polak JM, Crow TJ (1983) Distribution of neuropeptides in the limbic system of the rat: the bed nucleus of the stria terminalis and preoptic area. Neuroscience 8: 677–703

    Google Scholar 

  • Zamboni L, De Martino C (1967) Buffered picric acid formaldehyde: a new rapid fixative for electron microscopy. J Cell Biol 35: 148A

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, Z.R., Yamano, M., Shiosaka, S. et al. Origin of leucine-enkephalin fibers and their two main afferent pathways in the bed nucleus of the stria terminalis in the rat. Exp Brain Res 65, 411–420 (1987). https://doi.org/10.1007/BF00236314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236314

Key words

Navigation