Skip to main content
Log in

Effects of naftidrofuryl oxalate on microsphere-induced changes in acetylcholine and amino acid content of rat brain regions

  • Original Paper
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Effects of naftidrofuryl oxalate (naftidrofuryl) on neurotransmitter, acetylcholine, and amino acid content of brain regions following microsphere-induced cerebral embolism were examined to elucidate its possible therapeutic effects on ischemic brain. Rats received 900 microspheres (48 μm in diameter) via the right internal carotid artery, followed by ligation of the right common carotid artery; and histological and biochemical alterations were examined on the 3rd, 5th, and 28th days after embolism. The embolism induced increases in triphenyltetrazolium chloride-(TTC)-unstained areas and decreases in acetylcholine, glutamate, aspartate, and γ-aminobutyric acid (GABA) contents in the cerebral cortex, striatum, and hippocampus of the right hemisphere, suggesting that microsphere embolism causes severe damage to these brain regions. Hematoxylin-eosin staining of the right cortical sections after embolism showed degeneration and necrosis of nerve cells with chromatolytic nuclei and eosinophilic cytoplasm. Changes in neurotransmitters of the left hemisphere were relatively small. Treatment with naftidrofuryl of the embolized rats with stroke-like symptoms took place from postoperative day 1 to 28. Treatment resulted in a reduction in TTC-unstained areas, less morphological damage to cerebral cortex on the 3rd and 5th days, and an appreciable restoration of acetylcholine content of three brain regions of the right hemisphere throughout the experiment, but restoration of neurotransmitter amino acids was observed to a smaller degree. The results suggest that naftidrofuryl is capable of preventing the development of ischemia-induced, sustained damage to brain regions vulnerable to oxygen deficiency, particularly by improving impaired acetylcholine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrup J, Siesjö BK, Symon L (1982) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12:723–725

    Google Scholar 

  • Bederson JB, Pitts LH, Germane SM, Nishimura MC, Davis RL, Bartkowski HM (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308

    Google Scholar 

  • Choi DM, Koh J, Petters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antogonists. J Neurochem 8:185–196

    Google Scholar 

  • Freeman JJ, Jenden DJ (1976) The source of choline for acetylcholine synthesis in brain. Life Sci 19:949–961

    Google Scholar 

  • Furlow TW, Bass NH (1976) Arachidonate-induced cerebrovascular occlusion in the rat. Neurology 26:297–304

    Google Scholar 

  • Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem 27:37–42

    Google Scholar 

  • Gibson GE, Duffy TE (1981) Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J Neurochem 37:28–33

    Google Scholar 

  • Hakim M, Hogan MJ, Carpenter S (1992) Time course of cerebral blood flow and histological outcome after focal cerebral ischemia in rats. Stroke 23:1138–1144

    Google Scholar 

  • Heiss WD (1983) Flow thresholds of functional and morphological damage of brain tissue. Stroke 14:329–331

    Google Scholar 

  • Hillered L, Hallstrom A, Segersvard S, Persson L, Ungerstedt U (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9:607–616

    Google Scholar 

  • Hiramatsu Y, Yamaguchi K, Yoshida M, Yamada S, (1988) Effects of naftidrofuryl oxalate (LS-121) on the peripheral and cerebral circulation. Appl Pharmacol 36:341–352

    Google Scholar 

  • Jørgensen MB, Diemer NH (1982) Selective neuron loss after cerebral ischemia in the rat. Possible role of transmitter glutamate. Acta Neurol Scand 66:536–546

    Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  • Kosh JW, Dick RM, Freeman JL (1980) Choline post-mortem increase: effect of tissue, agitation, pH and temperature. Life Sci 27:1953–1959

    Google Scholar 

  • Mattson MP, Kater SB (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res 478:337–348

    Google Scholar 

  • McGraw CP (1977) Experimental cerebral infarction. Effect of pentobarbital in Mongolian gerbils. Arch Neurol 34:334–336

    Google Scholar 

  • Meldrum B (1985) Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin Sci 68:113–122

    Google Scholar 

  • Mitani A, Imon H, Iga K, Kubo H, Kataoka K (1990) Gerbil hippocampal extracellular glutamate and neuronal activity after transient ischemia. Brain Res 25:319–324

    Google Scholar 

  • Miyake K, Takeo S (1992) Blood flow of brain regions after microsphere-embolism and effects of naftidrofuryl oxalate. Clin Neuropharmacol [Suppl] 15:482B

  • Miyake K, Tanonaka K, Tanonaka R, Inoue K, Takeo S (1989) Possible therapeutic effect of naftidrofuryl oxalate on brain energy metabolism after microsphere-induced cerebral embolism. Br J Pharmacol 98:389–396

    Google Scholar 

  • Miyake K, Taguchi T, Tanonaka K, Takagi N, Takeo S (1992) Beneficial effects of naftidrofuryl oxalate on brain regional energy metabolism after microsphere-induced cerebral embolism. J Pharmacol Exp Ther 260:1055–1066

    Google Scholar 

  • Miyake K, Takeo S, Kajihara H (1993) Sustained decrease in brain regional blood flow following microsphere embolism in rats. Stroke 24:415–420

    Google Scholar 

  • Pulsinelli WA, Waldman S, Rawllinson D, Plum F (1982) Moderate hyperglycaemia augments ischemic brain damage: a neurophatological study in the rat. Neurology 32:1239–1246

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    Google Scholar 

  • Saito K, Honda S, Tobe A, Yanagiya I (1985) Effects of bifemerane hydrochloride (MCI-2016) on acetylcholine level reduced by scopolamine, hypoxia and ischemia in the rats and Mongolian gerbils. Jpn J Pharmacol 38:375–380

    Google Scholar 

  • Scremin OU, Jenden DJ (1989a) Focal ischemia enhances choline output and decreases acetylcholine output from rat cerebral cortex. Stroke 20:92–95

    Google Scholar 

  • Scremin OU, Jenden DJ (1989b) Effects of middle cerebral artery occlusion on cerebral cortex choline and acetylcholine in rats. Stroke 20:1524–1530

    Google Scholar 

  • Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332

    Google Scholar 

  • Takeo S, Miyake K, Minematsu R, Tanonaka K, Konishi M (1989) In vitro effect of naftidrofuryl oxalate on cerebral mitochondria impaired by microsphere-induced embolism in rats. J Pharmacol Exp Ther 248:1207–1214

    Google Scholar 

  • Takeo S, Tanonaka R, Miyake K, Tanonaka K, Taguchi T, Kawakami K, Ono M, Hiramatsu M, Okano K (1991) Naftidrofuryl oxalate improves impaired brain glucose metabolism after microsphere-induced cerebral embolism in rats. J Pharmacol Exp Ther 257:404–410

    Google Scholar 

  • Takeo S, Taguchi T, Tanonaka K, Miyake K, Horiguchi T, Takagi N, Fujimori K (1992) Sustained damage to energy metabolism of brain regions following microsphere-embolism in rats. Stroke 23:62–68

    Google Scholar 

  • Tuček S (1984) Problem in the organization and control of acetylcholine synthesis in brain neurons. Prog Biophys Mol Biol 44:1–46

    Google Scholar 

  • Yasumatsu H, Yamamoto Y, Takamura H, Anami K, Takehara S, Setoguchi M, Maruyama Y (1987) Pharmacological studies on Y-8894. VII. Effects on transient cerebral ischemia-induced amnesia in rats. Nippon Yakurigaku Zasshi 90:321–330

    Google Scholar 

  • Young AR, Barry DI, Mackenzie ET, Robert JP (1983) Cerebrocirculatory effects of so-called “vasodilators” in the anesthetized rat. Eur Neurol 22:142–153

    Google Scholar 

  • Zeisel SH (1985) Formation of unesterified choline by rat brain. Biochim Biophys Acta 835:331–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taguchi, T., Takagi, N., Miyake, K. et al. Effects of naftidrofuryl oxalate on microsphere-induced changes in acetylcholine and amino acid content of rat brain regions. Exp Brain Res 99, 7–16 (1994). https://doi.org/10.1007/BF00241407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241407

Key words

Navigation