Skip to main content
Log in

Extent and nature of extracellular organic production by the marine coccolithophorid Hymenomonas carterae

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Production of extracellular dissolved organic substances by cultures of the marine coccolithophorid Hymenomonas carterae SMBA 254 was investigated by the 14C-tracer technique. In 4 h incubations, extracellular 14C production represented 20 to 64% of 14C incorporation into cell material for cultures nearing, or during stationary growth; for rapidly growing cultures with relatively low cell densities the 14C-production was only 4 to 10% of incorporation. Intra-and extra-cellular material was fractionated by ion-exchange membrane electrodialysis. Ionic compounds accounted for 40 to 60% of extracellular material; in contrast only 16 to 27% of intracelular metabolites were in this category. Of a range of methods which were investigated, separation of compounds by gel-filtration in conjunction with two-dimensional thin-layer chromatography proved most effective. Up to 80% of extracellular material was of less than 1 800 mol. wt and included carbohydrates and amino acids, with glutamic acid predominating. The intracellular material was more heterogeneous, with a substantially greater proportion of high molecular weight material. The quite distinct compositions show clearly that extracellular production observed in these experiments arose through excretion and was not attributable to cell lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aaronson, S. (1978). Excretion of organic matter by phytoplankton in vitro. Limnol. Oceanogr. 23: p. 838

    Google Scholar 

  • Al-Hasan, R. H., Coughlan, S. J. (1976). A method for the determination of glycollic acid in the extracellular products of cultured and natural phytoplankton populations. J. exp. mar. Biol. Ecol. 25: 141–149

    Google Scholar 

  • Andreae, M. O. (1980). Dimethyl sulphoxide in marine and fresh waters. Limnol. Oceanogr. 25: 1054–1063

    Google Scholar 

  • Andrews, P., Williams, P. J. LeB. (1971). Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in sea water. J. mar. biol. Ass. U.K. 51: 111–125

    Google Scholar 

  • Aronoff, S. (1956). Techniques of radiobiochemistry. Iowa State College Press, Iowa

    Google Scholar 

  • Bean, R. C., Porter, G. G. (1959). Detection and differentiation of sugars and polyols on single paper chromatograms. Analyt. Chem. 31: 1929–1930

    Google Scholar 

  • Bieleski, R. L., Young, R. E. (1963). Extraction and separation of phosphate esters from plant tissues. Analyt. Biochem. 6: 54–68

    Google Scholar 

  • Burney, C. M., Sieburth, J. McN. (1977). Dissolved carbohydrates in seawater. II. A spectrophotometric procedure for total carbohydrate analysis and polysaccharide estimation. Mar. Chem. 5: 15–28

    Google Scholar 

  • Campbell, E. E., Fock, H. P., Bate, G. C. (1985). Exudation of recently fixed photosynthetic products from surf zone phytoplankton of the Sundays River beach. Botanica mar. 28: 399–405

    Google Scholar 

  • Cattolico, R. A., Boothroyd, J. C., Gibbs, S. P. (1976). Synchronous growth and plastid replication in the naturally wall-less alga Olisthodiscus luteus. Pl. Physiol. 57: 497–503

    Google Scholar 

  • Chapman G., Rae, A. C. (1967). Isolation of organic solutes from sea water by co-precipitation. Nature, Lond. 214: 627–628

    Google Scholar 

  • Clark, M. E., Jackson, G. A., North, W. J. (1972). Dissolved free amino acids in Southern California coastal waters. Limnol. Oceanogr. 17: 749–758

    Google Scholar 

  • Craigie, J. S. (1969). Some salinity-induced changes in growth, pigments, and cyclohexanetetrol content of Monochrysis lutheri. J. Fish. Res. Bd Can. 26: 2959–2967

    Google Scholar 

  • Dawson, R., Pritchard, R. G. (1978). The determination of α-amino acids in seawater using a fluorimetric analyser. Mar. Chem. 6: 27–40

    Google Scholar 

  • Fogg, G. E. (1958). Extracellular products of phytoplankton and the estimation of primary production. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 144: 56–60

    Google Scholar 

  • Fogg, G. E. (1977). Excretion of organic matter by phytoplankton. Limnol. Oceanogr. 22: 576–577

    Google Scholar 

  • Fogg, G. E. (1983). The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica mar. 26: 3–14

    Google Scholar 

  • Garassi, C., Degens, E. T., Mopper, K. (1979). The free amino acid composition of seawater obtained without desalting and preconcentration. Mar. Chem. 8: 71–85

    Google Scholar 

  • Goldman, J. C., Dennett, M. R. (1985). Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J. exp. mar. Biol. Ecol. 86: 47–58

    Google Scholar 

  • Guillard, R. R. L., Wangersky, P. J. (1958). The production of extracellular carbohydrates by some marine flagellates. Limnol. Oceanogr. 3: 449–454

    Google Scholar 

  • Hellebust, J. A. (1965). Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206

    Google Scholar 

  • Hellebust, J. A. (1974). Extracellular products. In: Stewart, W. D. P. (ed.) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, p. 838–863

    Google Scholar 

  • Hirayama, H. (1974). Fluorimetric determination of carbohydrates in sea water. Analytica chim. Acta 70: 141–148

    Google Scholar 

  • Holdsworth, E. S., Colbeck, J. (1976). The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar. Biol. 38: 189–199

    Google Scholar 

  • Ittekkot, V., Brockmann, U., Michaelis, W., Degens, E. T. (1981). Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Mar. Ecol. Prog. Ser. 4: 299–305

    Google Scholar 

  • Iturriaga, R. (1981). Phytoplankton photoassimilated extracellular products: heterotrophic utilization in marine environment. Kieler Meeresforsch. 5: 318–324

    Google Scholar 

  • Jeffrey, L. M., Hood, D. W., (1958). Organic matter in sea water; an evaluation of various methods for isolation. J. mar. Res. 17: 247–271

    Google Scholar 

  • Jenkins, C. L. D. (1979). Metabolic consequences of inhibition of the glycolate pathway in plants. Thesis, University of Wales, Aberystwyth

    Google Scholar 

  • Johnson, K. M., Burney, C. M., Sieburth, J. McN. (1981). Doubling the production and precision of the MBTH spectrophotometric assay for dissolved carbohydrates in seawater. Mar. Chem. 10: 467–473

    Google Scholar 

  • Johnson, K. M., Sieburth, J. McN. (1977). Dissolved carbohydrates in seawater. I. A precise spectrophotometric analysis for monosaccharides. Mar. Chem. 5: 1–13

    Google Scholar 

  • Jones, A. K., Cannon, R. C. (1986). The release of micro-algal photosynthate and associated bacterial uptake and heterotrophic growth. Br. phycol. J. 21: 341–358

    Google Scholar 

  • Josefsson, B. O. (1970). Determination of soluble carbohydrates in seawater by partition chromatography after desalting by ion-exchange membrane electrodialysis. Analytica chim. Acta 52: 65–73

    Google Scholar 

  • Kirst, G. O. (1975). Beziehungen zwischen Mannitkonzentration und osmotischer Belastung bei der Brackwasseralge Platymonas subcordiformis Hazen. Z. PflPhysiol. 76: 316–325

    Google Scholar 

  • Lancelot, C. (1984). Metabolic changes in Phaeocystis poucheti (Hariot) Lagerheim during the spring bloom in Belgian coastal waters. Estuar. cstl Shelf Sci. 18: 593–600

    Google Scholar 

  • Larsson, U., Hagström Å. (1979). Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206

    Google Scholar 

  • Larsson, U., Hagström A. (1982). Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70

    Google Scholar 

  • Lindroth, P., Mopper, K. (1979). High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Analyt. Chem. 51: 1667–1674

    Google Scholar 

  • Ling, J. R., Buttery, P. J. (1978). Simultaneous use of ribonucleic acid, 35 S, 2, 6-diaminopimelic acid and 2-aminoethyl-phosphoric acid as markers of microbial nitrogen entering the duodenum of sheep. Br. J. Nutr. 39: 165–179

    Google Scholar 

  • Litchefield, C. D., Prescott, J. M. (1970). Analysis by dansylation of amino acids dissolved in marine and freshwaters. Limnol. Oceanogr. 15: 250–256

    Google Scholar 

  • Mague, T. H., Friberg, E., Hughes, D. J., Morris, I. (1980). Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279

    Google Scholar 

  • Mantoura, R. F. C., Riley, J. P. (1975). The analytical concentration of humic substances from natural waters. Analytica chim. Acta 76: 97–106

    Google Scholar 

  • Marker, A. F. H. (1965). Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum. J. mar. biol. Ass. U.K. 45: 755–772

    Google Scholar 

  • Nalewajko, C., Lean, D. R. S. (1972). Retention of dissolved compounds by membrane filters as an error in the 14C method of primary production measurement. J. Phycol. 8: 37–43

    Google Scholar 

  • Nalewajko, C., Schindler, D. W. (1976). Primary production, extracellular release, and heterotrophy in two lakes in the ELA, northwestern Ontario. J. Fish. Res. Bd Can. 33: 219–226

    Google Scholar 

  • North, B. B. (1975). Primary amines in California coastal waters: utilization by photoplankton. Limnol. Oceanogr. 20: 20–27

    Google Scholar 

  • Palmork, K. H. (1963). The use of 2,4-dionitro-1-fluorobenzene in the separation and identification of amino acids from seawater. Acta chem. scand. 17: 1456–1457

    Google Scholar 

  • Pocklington, R. (1980). Dissolved organic matter in seawater: past experience and future prospects. In: Thompson, J. A. J., Jamieson, W. D. (eds.) Marine chemistry into the eighties. Natural Research Council of Canada, Ottawa, p. 150–172

    Google Scholar 

  • Riley, J. P., Taylor, D. (1969). The analytical concentration of dissolved organic materials from seawater with Amberlite XAD-1 resin. Analytica chim. Acta 46: 307–309

    Google Scholar 

  • Sakugawa, H., Handa, N. (1985). Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay. Geochim. cosmochim. Acta 49: 1185–1193

    Google Scholar 

  • Shah, N. M., Fogg, G. E. (1973). The determination of glycollic acid in seawater. J. mar. biol. Ass. U.K. 53: 321–324

    Google Scholar 

  • Shah, N. M., Wright, R. T. (1974). The occurrence of glycolic acid in coastal seawater. Mar. Biol. 24: 121–124

    Google Scholar 

  • Sharp, J. H. (1977). Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22: 381–399

    Google Scholar 

  • Sharp, J. H. (1978). Reply to comment by S. Aaronson. Limnol. Oceanogr. 23: 839–840

    Google Scholar 

  • Siegel, A., Degens, E. T. (1966). Concentration of dissolved amino acids from saline waters by ligand-exchange chromatography. Science, N.Y. 151: 1098–1101

    Google Scholar 

  • Stahl, E. (ed.) (1965). Thin-layer chromatography. A laboratory handbook. Academic Press, New York

    Google Scholar 

  • Steemann Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140

    Google Scholar 

  • Stuermer, D. H., Harvey, G. R. (1977). The isolation of humic substances and alcohol-soluble organic matter from seawater. Deep-Sea Res. 24: 303–309

    Google Scholar 

  • Watt, W. D. (1969). Extracellular release of organic matter from two freshwater diatoms. Ann. Bot. 33: 427–437

    Google Scholar 

  • Wiebe, W. J., Smith, D. F. (1977). Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs. Mar. Biol. 42: 213–223

    Google Scholar 

  • Wood, T. (1956). A laboratory electrodialyser and desalter. Biochem. J. 62: 611–613

    Google Scholar 

  • Wood, T., Bender, A. E. (1957). Analysis of tissue consitutents. Biochem. J. 67: 366–373

    Google Scholar 

  • Zweig, G., Sherma, J. (eds.) (1972). Handbook of chromatography. Vol. I. CRC Press, Cleveland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlowe, I.T., Rogers, L.J. & Smith, A.J. Extent and nature of extracellular organic production by the marine coccolithophorid Hymenomonas carterae . Mar. Biol. 100, 381–391 (1989). https://doi.org/10.1007/BF00391154

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391154

Keywords

Navigation