Skip to main content
Log in

Biochemical and energetic composition of bathyal echinoids and an asteroid, holothuroid and crinoid from the Bahamas

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The biochemical and energetic composition of body components of ten species of bathyal echinoids, and an asteroid, a holothuroid and a stalked crinoid were determined from individuals sampled from a variety of deep-water sites near the Bahamas (north Caribbean Sea) in October 1988. When compared with other studies of echinoderms, no geographic- or depth-related differences in biochemical or energetic composition were found. Body-wall tissues were composed primarily of skeletal material (mineral ash), but were comparatively high in organic material in the echinothuriid echinoids, and the asteroid and holothuroid. Gut tissues and pyloric cecae had high levels of lipid and protein, indicating their potential role in nutrient storage. Body-wall tissues were generally low in energy, but were highest in the echinoidsAraeosoma belli (7.7 kJ g−1 dry wt) andSperosoma antillense (8.0 kJ g−1 dry wt), the asteroidOphidiaster alexandri (8.9 kJ g−1 dry wt), and the holothuroidEostichopus regalis (13.1 kJ g−1 dry wt). Energy levels of gut and pyloric cecal tissues were two to three times higher than those of body-wall tissues. Total somatic tissue energy values varied greatly among species, ranging from 1.5 kJ in the echinoidAspidodiadema jacobyi to 142.1 kJ inE. regalis. As the bathyal echinoderms examined in this study occur in great abundance, they represent a significant reservoir of organic and inorganic materials and energy in deep-water benthic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Brody, S. (1945). Bioenergetics and growth. Reinhold, New York

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, R. (1956). Colorimetric method of determination of sugars and related substances. Analyt. Chem. 28:350–356

    Google Scholar 

  • Freeman, N. K., Lindgren, K. T., Ng, N. Y., Nichols, A. V. (1957). Infrared spectra of some lipoproteins and related lipids. J. biol. Chem. 203:293–304

    Google Scholar 

  • Giese, A. C. (1966). On the biochemical constitution of some echinoderms. In: Boolootian, R. A. (ed.) Physiology of Echinodermata. Wiley, New York, p. 757–796

    Google Scholar 

  • Giese, A. C. (1976). Physiology of the echinoderm body wall. Thalassia jugosl. 12:153–163

    Google Scholar 

  • Khripounoff, A., Sibuet, M. (1980). La nutrition d'échinodermes abyssaux. I. Alimentation des holothuries. Mar. Biol. 60:17–26

    Google Scholar 

  • Klinger, T. S., Watts, S. A., Forcucci, D. (1988). Effect of short-term feeding and starvation on storage and synthetic capacities of gut tissues ofLytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). J. exp. mar. Biol. Ecol. 117:187–195

    Google Scholar 

  • Krishnan, S. (1968). Histochemical studies on reproductive and nutritional cycles of the holothurian,Holothuria scabra. Mar. Biol. 2:54–64

    Google Scholar 

  • Lawrence, J. M. (1973). Level, content and caloric equivalents of the lipid, carbohydrate, and protein in the body components ofLuidia clathrata (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 11: 263–274

    Google Scholar 

  • Lawrence, J. M. (1985). The energetic echinoderm. In: Keegan, B. F., O'Connor, B. D. S. (eds.) Echinodermata. A. A. Balkema, Rotterdam, p. 47–68

    Google Scholar 

  • Lawrence, J. M., Guille, A. (1982). Organic composition of tropical, polar, and temperate-water echinoderms. Comp. Biochem. Physiol. 72B: 283–287

    Google Scholar 

  • Lawrence, J. M., Kafri, J. (1979). Numbers, biomass, and caloric content of the echinoderm fauna of the rocky shores of Barbados. Mar. Biol. 52: 87–91

    Google Scholar 

  • Lowry, O., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Magniez, P. (1983). Reproductive cycle of the brooding echinoidAbatus cordatus (Echinodermata) in Kerguelen (Antarctic Ocean): changes in the organ indices, biochemical composition, and caloric content of the gonads. Mar. Biol. 74: 55–64

    Google Scholar 

  • McClintock, J. B. (1989a). Energetic composition, reproductive output, and resource allocation of antarctic asteroids. Polar Biol. 9: 147–153

    Google Scholar 

  • McClintock, J. B. (1989b). The biochemical and energetic composition of somatic tissues during growth in the sea star,Pycnopodia helianthoides (Echinodermata: Asteroidea). Comp. Biochem. Physiol. 931: 695–698

    Google Scholar 

  • McClintock, J. B., Pearse, J. S. (1987a). Biochemical composition of antarctic echinoderms. Comp. Biochem. Physiol. 6B: 683–687

    Google Scholar 

  • McClintock, J. B., Pearse, J. S. (1987b) Reproductive biology of the common antarctic crinoidPromachocrinus kerguelensis (Echinodermata: Crinoidea). Mar. Biol. 96: 375–383

    Google Scholar 

  • McClintock, J. B., Pearse, J. S., Bosch, I. (1988). Population structure and energetics of the shallow-water antarctic sea starOdontaster validus in contrasting habitats. Mar. Biol. 99: 235–246

    Google Scholar 

  • Menzies, R. J., George, R. Y., Rowe G. T. (1973). Abyssal environments and ecology of the world oceans. Wiley-Interscience, New York

    Google Scholar 

  • Paine, R. T. (1971). The measurement and application of the calorie to ecological problems. A. Rev. Ecol. Syst. 2: 145–164

    Google Scholar 

  • Prim, P., Lawrence, J. M., Turner, R. L. (1976). Protein, carbohydrate, and lipid levels of the adult body wall ofActinopyga agassizi, Synaptula hydriformis, andPentacta pygmea (Echinodermata: Holothuroidea). Comp. Biochem. Physiol. 55B: 307–309

    Google Scholar 

  • Rowe, G. T., Staresinic, N. (1979). Sources of organic matter to the deep-sea benthos. Ambio 6: 19–25

    Google Scholar 

  • Saito, N., Watts, S. A. (1989). Activities of hexokinase, phosphofructokinase, and pyruvate kinase in the body wall, pyloric caeca and tube feet ofAsterias vulgaris: evidence of body wall as a major source of glycolytic activity. Comp. Biochem. Physiol. 94B: 263–267

    Google Scholar 

  • Sanders, H. L., Hessler, R. R., Hampson, G. R. (1965). An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep-Sea Res. 12: 845–867

    Google Scholar 

  • Sibuet, M., Lawrence, J. M. (1981). Organic content and biomass of abyssal holothuroids (Echinodermata) from the Bay of Biscay. Mar. Biol. 65: 143–147

    Google Scholar 

  • Wacasey, J. W., Atkinson, E. G. (1987). Energy values of marine benthic invertebrates from the Canadian Arctic. Mar. Ecol. Prog. Ser. 39: 243–250

    Google Scholar 

  • Walker, M., Tyler, P. A., Billett, D. S. M. (1987a). Organic and calorific content of the body tissues of deep-sea elasipodid holothurians in the northeast Atlantic Ocean. Mar. Biol. 96: 277–282

    Google Scholar 

  • Walker, M., Tyler, P. A., Billett, D. S. M. (1987b). Biochemical and calorific content of deep-sea aspidochirotid holothurians from the northeast Atlantic Ocean. Comp. Biochem. Physiol. 88A: 549–551

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClintock, J.B., Cameron, J.L. & Young, C.M. Biochemical and energetic composition of bathyal echinoids and an asteroid, holothuroid and crinoid from the Bahamas. Mar. Biol. 105, 175–183 (1990). https://doi.org/10.1007/BF01344284

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344284

Keywords

Navigation