Skip to main content
Log in

Genetic variability in bloodworm (Glycera dibranchiata) populations in the Gulf of Maine

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Genetic structure of eight Northwest Atlantic populations of the marine polychaeteGlycera dibranchiata Ehlers was examined with starch gel electrophoresis. Samples were collected during summer and fall 1981, and seven polymorphic and four monomorphic loci were consistently scored. Average heterozygosity (0.126) and percent polymorphic loci (59.3) were comparable to the averages reported for marine invertebrates. Minimum genetic distances between populations ranged from 0.003 to 0.093, levels typically associated with local populations of the same species in other taxa. Based on these data, inter- and intra-estuarine migration and gene flow appear to be low. Only two populations, separated by 13 km along the same river in New Brunswick, Canada, were not genetically different from each other. These findings may have relevance for management strategies in bloodworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Apollonio, S. (1979). The Gulf of Maine. Courier of Maine Books, Rockland, Maine

    Google Scholar 

  • Ayala, F. J., Valentine, J. W., Barr, L. G., Zumwalt, G. S. (1974). Genetic variability in a temperate intertidal phoronoid (Phoronopsis viridia). Biochem. Genet. 11: 413–427

    Google Scholar 

  • Beckwitt, R. (1980). Genetic structure ofPileolaria pseudomilitaris (Polychaeta: Spirobidae). (With appendix by R. Chakraborty). Genetics, Austin, Tex. 96: 711–726

    Google Scholar 

  • Brewer, G. J. (1970). An introduction to isozyme techniques. Academic Press, New York

    Google Scholar 

  • Bristow, G. A. (1983). The population genetics and ecology of the bloodworm,Glycera dibranchiata Ehlers in the Gulf of Maine. M.Sc. thesis, University of Maine, Orono, Maine

    Google Scholar 

  • Bumpus, D. F. (1973). A description of the circulation on the continental shelf of the East Coast of the United States. In: Warren, B. A. (ed.) Progress in oceanography, Vol. 6. Pergamon Press, N.Y., p. 111–157

    Google Scholar 

  • Clayton, J. W., Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Bd Can. 29: 1169–1172

    Google Scholar 

  • Constantinidis, I., Kandler, R. L., Sattlerlee, J. D. (1989). Purity ofGlycera dibranchiata monomer hemoglobin components III and IV determined by isoelectric focusing. Comp. Biochem. Physiol. 92: 619–622

    Google Scholar 

  • Creaser, E. P., Jr. (1973). Reproduction of the bloodworm (Glycera dibranchiata) in the Sheepscot Estuary, Maine. J. Fish. Res. Bd Can. 30: 161–166

    Google Scholar 

  • Creaser, E. P., Clifford, D. A. (1986). The size frequency and abundance of subtidal bloodworms (Glycera dibranchiata, Ehlers) in Montsweag Bay, Woolwich-Wiscasset, Maine. Estuaries 9: 200–207

    Google Scholar 

  • Creaser, E. P., Jr., Clifford, D. A., Hogan, M. J., Sampson, D. B. (1983). A commercial sampling program for sandworms,Nereis virens Sars, and bloodworms,Glycera dibranchiata Ehlers, harvested along the Maine coast. NOAA tech. Rep. U.S. Dep. Commerce NMFS SSRF-767

  • Cronin, T. W. (1982). Estuarine retention of larvae of the crab,Rhithropanopeus harrisii. Estuar. cstl Shelf Sci. 15: 207–220

    Google Scholar 

  • Dean, D. (1978). The swimming of bloodworms (Glycera spp.) at night, with comments on other species. Mar. Biol. 48: 99–104

    Google Scholar 

  • Dean, D., Ewart, J. (1978). Benthos (commercially important invertebrates). In: Final rep. Environmental surveillance and studies in the Maine Nuclear Generating Station. Maine Yankee Atomic Power Co., Augusta, Maine, p. 10.1–10.86

    Google Scholar 

  • Dow, R. L., Creaser, E. P. Jr., (1970). Marine bait worms: a valuable inshore resource. Marine resources of the Atlantic coast, Leaflet 12, June 1970. Atlantic States Marine Fisheries Commission, Tallahassee, Florida

    Google Scholar 

  • Fairbairn, D. J., Roff, D. A. (1980). Testing genetic models of isozyme variability without breeding data: Can we depend on Chi square? Can. J. Fish. aquat. Sciences 37: 1149–1159

    Google Scholar 

  • Gaal, O., Medgyesi, G. A., Vereczkey, L. (1980). Electrophoresis in the separation of biological macromolecules. Wiley-Interscience, New York

    Google Scholar 

  • Gould, S. J., Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm. A critique on the adaptationist programme. Proc. R. Soc. (Ser. B) 205: 581–598

    Google Scholar 

  • Graham, J. (1972). Retention of larval herring within the Sheepscot Estuary of Maine. Fish. Bull. U.S. 70: 299–305

    Google Scholar 

  • Graham, J., Creaser, E. P. Jr. (1978). Tycoplanktonic bloodworm,Glycera dibranchiata, in Sullivan Harbor, Maine. Fish. Bull. U.S. 76: 480–483

    Google Scholar 

  • Hartl, D. L. (1980). Principles of populations genetics. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hartl, D. L., Clark, A. G. (1989). Principles of population genetics, 2nd edn. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hilbish, T. J., Koehn, R. K. (1985). The physiological basis of natural selection at the LAP locus. Evolution, Lawrence, Kansas 39: 1302–1317

    Google Scholar 

  • Johnson, M. S., Black, R. (1984). The Wahlund effect and the geographical scale of variation in the intertidal limpetSiphonaria sp. Mar. Biol. 79: 295–302

    Google Scholar 

  • Joule, B. J. (1983). An effective method for tagging marine polychaetes. Can. J. Fish. aquat. Sciences 40: 540–541

    Google Scholar 

  • Klawe, W. L., Dickie, L. M. (1957). Biology of the bloodworm,Glycera dibranchiata Ehlers, and its relation to the bloodworm fishery of the Maritime Provinces. Bull. Fish. Res. Bd Can. 115: 1–37

    Google Scholar 

  • Koehn, R. K., Hilbish, T. J. (1987). The adaptive importance of genetic variation. Am. Scient. 75: 134–141

    Google Scholar 

  • Li, C. C. (1976). First course in population genetics. Boxwood Press, Pacific Grove, California

    Google Scholar 

  • Markert, C. I., Faulhaber, I. (1965). Lactate dehydrogenase isozyme patterns of fish. J. exp. Zool. 159: 319–332

    Google Scholar 

  • May, B. (1975). Electrophoretic variation in the genusOncorhynchus: the methodology, genetic basis and practical applications to fisheries research and management. M.Sc. thesis, University of Washington, Seattle, Washington

    Google Scholar 

  • May, B., Wright, J. E., Stoneking, M. (1979). Joint segregation of biochemical loci in Salmonidae: results from experiments withSalvelinus and review of the literature on other species. J. Fish. Res. Bd Can. 36: 1114–1128

    Google Scholar 

  • Mazurkiewicz, M. (1974). Bailey Cove intensive studies. In: Semiannual Surveillance Rep. No. 3. Maine Yankee Atomic Power Co., Augusta, Maine, p. 206–277

    Google Scholar 

  • McAlice, B. J. (1977). A preliminary oceanographic survey of the Damariscotta River estuary, Lincoln County, Maine. Maine Sea Grant Technical Report 13–77, University of Maine, Orono, Maine

    Google Scholar 

  • McCleave, J. D., Kleckner, R. C. (1982). Selective tidal stream transport in the estuarine migration of glass eels of the American eel (Anguilla rostrata). J. Cons. int. Explor. Mer 40: 262–271

    Google Scholar 

  • Mill, P. J. (1978). Physiology of annelids. Academic Press, London

    Google Scholar 

  • Mintorovitch, J., Van Pelt, D., Satterlee, J. D. (1989). Kinetic study of the slow cyanide binding toGlycera dibranchiata monomer hemoglobin components III and IV. Biochemistry (Am. chem. Soc.) Easton, Pa. 28: 6099–6104

    Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. natn. Acad. Sci. U.S.A. 70: 3321–3323

    Google Scholar 

  • Nei, M. (1976). Mathematical models of speciation and genetic distance. In: Karlin, S., Nevo, E. (eds.) Population genetics and ecology. Academic Press, New York, p. 723–765

    Google Scholar 

  • Nei, M. (1977). F-statistics and analysis of gene diversity in subdivided populations. Ann. hum. Genet. 41: 225–233

    Google Scholar 

  • Nei, M., Roychoudhury, A. K. (1974). Sampling variances and genetic distance. Genetics, Austin, Tex. 76: 379–390

    Google Scholar 

  • Nicklas, N. L., Hoffmann, R. J. (1979). Genetic similarity between two morphologically similar species of polychaetes. Mar. Biol. 52: 53–59

    Google Scholar 

  • Pettibone, M. (1963). Marine polychaete worms of the New England region. Bull. U.S. natn. Mus. 229: 1–356

    Google Scholar 

  • Powers, D. A., DiMichele, L., Place, A. R. (1983). The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate and swimming performance between LDHB genotypes of the fishFundulus heteroclitus. Isozymes. Curr. Topics biol. Med. Res. 10: 147–170

    Google Scholar 

  • Ridgeway, G. L., Sherburne, S. W., Lewis, R. D. (1970) Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151

    Google Scholar 

  • Selander, R. K. (1970). Behavior and genetic variation in natural populations. Am. Zool. 10: 53–66

    Google Scholar 

  • Selander, R. K. (1976). Genetic variation in natural populations. In: Ayala, F. A. (ed.) Molecular evolution. Sinauer Associates, Sunderland, Massachusetts, p. 21–45

    Google Scholar 

  • Shaw, C. R., Prasad, R. (1970). Starch gel electrophoresis of enzymes: a compilation of recipes. Biochem. Genet. 4: 297–320

    Google Scholar 

  • Simpson, M. (1962). Gametogenesis and early development of the polychaeteGlycera dibranchiata. Biol. Bull. mar. biol. Lab., Woods Hole 123: 412–423

    Google Scholar 

  • Sinclair, M. (1988). Marine populations: an essay on population regulation and speciation. University of Washington Press, Seattle, Washington

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R. (1973). Numerical taxonomy. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Stickney, A. P. (1959). Ecology of the Sheepscot River Estuary. Spec. scient. Rep. U.S. Fish Wildl. Serv. (Fish.) No. 309

  • Swofford, D. L., Selander, R. B. (1981). BIOSYS-1: A computer program for the analysis of allelic variation in genetics. Dept of Genetics and Development, University of Illinois at Urbana-Champaign, Urbana, Illinois

    Google Scholar 

  • Vadas, R. L., Bristow, G. A. (1985). Genetic changes associated with a bottleneck in an overharvested population ofGlycera dibranchiata (Polychaeta). In: Gray, J. S., Christiansen, M. E. (eds.) Marine biology of polar regions and effects of stress on marine organisms. John Wiley & Sons Ltd., New York, p. 617–629

    Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of populations, Vol. 4, Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bristow, G.A., Vadas, R.L. Genetic variability in bloodworm (Glycera dibranchiata) populations in the Gulf of Maine. Mar. Biol. 109, 311–319 (1991). https://doi.org/10.1007/BF01319399

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319399

Keywords

Navigation