Skip to main content
Log in

Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Toxic mechanisms of the red tide flagellate, Chattonella marina, collected in 1985 from Kagoshima Bay, Japan, were studied at the subcellular level. C. marina was found to reduce ferricytochrome c at a rate related to the concentration of plankton cells. Ca. 50% of the cytochrome c reduction was inhibited by the addition of 100 U superoxide dismutase ml-1. These results suggest that a part of the cytochrome c reduction was caused by a superoxide anion which was extracellulary released from C. marina. Moreover, a small amount of hydrogen peroxide was detected in the C. marina suspension using the fluorescence spectrophotometric assay method. The identity of the hydrogen peroxide was confirmed by its reaction with 500 U catalase ml-1. It is thus proposed that C. marina produces harmful active oxygen radicals and therefore exhibits a toxic effect on surrounding living organisms. In agreement with these results, C. marina strongly inhibited the proliferation of marine bacteria, Vibrio alginolyticus, in a plankton/bacteria co-culture system. The growth inhibition of bacteria caused by C. marina was related to the density and the metabolic potential of C. marina. Ruptured plankton showed no toxic effect on the bacteria. Furthermore, the toxic effect of C. marina on V. alginolyticus was completely suppressed by the addition of catalase and superoxide dismutase. In addition to these radical-scavenging enzymes, a chemical scavenger, sodium benzoate, also had a protective effect. These results suggest that oxygen radicals are important in the toxic action of C. marina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Asada, K., Kiso, K., Yoshikawa, K. (1974). Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J. biol. Chem. 249:2175–2181

    CAS  Google Scholar 

  • Babior, B. M. (1978). Oxygen-dependent microbial killing by phagocytes. New Engl. J. Med. 298:721–725

    Article  CAS  Google Scholar 

  • Dean, R. T. (1987). Free radicals, membrane damage and cell-mediated cytolysis. Br. J. Cancer. 55:39–45

    CAS  Google Scholar 

  • Fusetani, N., Ozawa, C., Hashimoto, Y. (1976). Fatty acids as ichthyotoxic constituents of a green alga Cheatomorpha minima. Bull. Jap. Soc. scient. Fish. 42:941

    Google Scholar 

  • Halliwell, B., Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1–14

    CAS  Google Scholar 

  • Ishimatsu, A., Maruta, H., Tsuchiyama, T., Ozaki, M. (1990). Respiratory, ionoregulatory and cardiovascular responses of the yellowtail Seriola quinqueradiata to exposure to the red tide plankton Chattonella. Nippon Suisan Gakk. 56:189–199

    Article  CAS  Google Scholar 

  • Johnson, K. J., Fantone, J. C., Kaplan, P. A. (1981). In vivo damage of rat lungs by oxygen metabolites. J. clin. Invest. 67:983–993

    Article  CAS  Google Scholar 

  • Johnston, R. B., Godzik, C. A. Jr., Cohn, Z. A. (1978). Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J. exp. Med. 148:115–127

    Article  CAS  Google Scholar 

  • Kakinuma, K., Minakami, S. (1978). Effects of fatty acids on superoxide radical generation in leukocytes. Biochim. biophys. Acta 538:50–59

    Article  CAS  Google Scholar 

  • Kamiya, H., Naka, K., Hashimoto, K. (1979). Ichthyotoxicity of a flagellate Vroglena volvox. Bull. Jap. Soc. scient. Fish. 45:129

    CAS  Google Scholar 

  • Klebanoff, S. J. (1982). Oxygen-dependent cytotoxic mechanisms of phagocytes. In: Gallin, J. I., Fauci, A. S. (eds.) Advances in host defense mechanisms. Raven Press, New York, p. 111–162

    Google Scholar 

  • McCord, J. M., Fridovich, I. (1969). Superoxide dismutase. J. biol. Chem. 244:6049–6055

    CAS  Google Scholar 

  • Nakayama, T., Kaneko, M., Kodama, M., Nagata, C. (1985). Cigarette smoke induces DNA single-strand breaks in human cells. Nature, Lond. 314:462–464

    Article  CAS  Google Scholar 

  • Nathan, C. F., Root, R. K. (1977). Hydrogen peroxide release from mouse peritoneal macrophages. J. exp. Med. 146:1648–1662

    Article  CAS  Google Scholar 

  • Oda, T., Akaike, T., Hamamoto, T., Suzuki, F., Suzuki, F., Hirano, T., Maeda, H. (1989). Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer conjugated SOD. Science, N.Y. 244:974–976

    Article  CAS  Google Scholar 

  • Onoue, Y., Nozawa, K. (1989). Separation of toxins from harmful red tides occurring along the coast of Kagoshima prefecture. In: Okaichi, T., Anderson, D. M., Nemoto, T. (eds.) Red tides: biology, environmental science, and toxicology. Elsevier, New York, p. 371–374

    Google Scholar 

  • Oren, R., Farnham, A. E., Saito, K., Mifosky, E., Karnovsky, M. L. (1963). Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 17:487–501

    Article  CAS  Google Scholar 

  • Romeo, D., Zabucchi, G., Rossi, F. (1973). Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin A. Nature new Biol. 243:111–112

    CAS  Google Scholar 

  • Shimada, M., Murakami, T. H., Imahayashi, T., Ozaki, H. S., Toyoshima, T., Okaichi, T. (1983). Effects of sea bloom, Chattonella antiqua, on gill primary lamellae of the young yellowtail, Seriola quinqueradiata. Acta histochem. cytochem. 16:232–244

    Article  Google Scholar 

  • Shimada, M., Shimono, R., Imahayashi, T., Ozaki, H. H., Murakami, T. H. (1986). Diazo-reaction positive substance observed in the cortex of Chattonella antiqua. Histol. Histopath. 1: 327–333

    CAS  Google Scholar 

  • Shimada, M., Shimono, R., Murakami, T. H., Yoshimatsu, S., Ono, C. (1989). Red tide, Chattonella antiqua reduces cytochrome c fron horse heart. In: Okaichi, T., Anderson, D. M., Nemoto, T., (eds.) Red tides: biology, environmental science, and toxicology. Elsevier, New York, p. 443–446

    Google Scholar 

  • Toyoshima, T., Ozaki, H. S., Shimada, M., Okaichi, T., Murakami, T. H. (1985). Ultrastructural alterations on chloride cells of the yellowtail Seriola quinqueradiata following exposure to the red tide species Chattonella antiqua. Mar. Biol. 88:101–108

    Article  Google Scholar 

  • Wallenstein, S., Zucher, C. L., Fleiss, J. L. (1980). Some statistical methods useful in circulation research. Circulation Res. 47:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Anraku, Suva

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, T., Ishimatsu, A., Shimada, M. et al. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus . Marine Biology 112, 505–509 (1992). https://doi.org/10.1007/BF00356297

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356297

Keywords

Navigation