Skip to main content
Log in

Laminar natural convection over a slender vertical frustum of a cone

Laminare natürliche Konvektion an einem dünnen, senkrechten Kegelstumpf

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The problem of laminar, natural convection flow over a slender frustum of a cone is treated in this paper. The governing differential equations are solved by a combination of quasi-linearization and finite-difference methods. Numerical solutions are obtained for Pr=0.7 and for a range of values of the transverse curvature parameter. It is shown that the effect of transverse curvature is of great significance in such flows.

Zusammenfassung

In diesem Bericht ist das Problem der laminaren natürlichen Konvektionsströmung an einem dünnen Kegelstumpf behandelt. Die maßgebliche Differentialgleichung ist durch eine Verbindung von Quasilinearisation und Differenzenverfahren gelöst. Eine numerische Lösung für Pr=0.7 wird für verschiedene Werte eines Krümmungsparameters angegeben. Es ist gezeigt, daß in solchen Strömungen dieser Krümmungsparameter eine große Bedeutung besitzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

f:

dependent variable, defined in Eq. (7)

g:

dependent variable, defined in Eq. (7)

ge :

gravitational acceleration

h:

heat transfer coefficient, or η-grid

k:

heat conductivity, or ξ-grid

L:

characteristic length

Nu:

Nusselt number

Pr:

Prandtl number

r:

radial distance from the axis of the cone

R:

transverse curvature effect ratio, defined in Eq. (23)

Re:

Reynold number

T:

temperature

u, v:

velocity components in the x- and y-directions, respectively

x, y:

rectangular coordinates

θ:

dimensionless temperature, definedinEq. (4)

β:

bulk modulus

α:

cone angle

ν:

dynamic viscosity

ψ:

stream function

ξ, η:

independent variable, defined in (7)

γ:

transverse curvature parameter

Literature

  1. Merk, H.J.; Prins, J.A.: Thermal Convection in Laminar Boundary Layer I. Appl. Sci. Res. 4A (1953) 11–24, 195–206

    Google Scholar 

  2. Hering, R.G.; Grosh, R.J.: Laminar Free Convection from a Non-Isothermal Cone. International J. of Heat and Mass Transfer 5 (1962) 1059–1067

    Google Scholar 

  3. Hering, R.G.: Laminar Free Convection from a Non-Isothermal Cone at Low Prandtl Numbers. International J. of Heat and Mass Transfer 8 (1965) 1333–1337

    Google Scholar 

  4. Sparrow, E.M.; Guinle, L.D.F.: Deviations from Classical Free Convection Boundary Layer Theory at Low-Prandtl Numbers. International J. of Heat and Mass Transfer 11 (1968) 1403–1415

    Google Scholar 

  5. Roy, S.: Free Convection from a Vertical Cone at High Prandtl Numbers. J. of Heat Transfer, Trans. ASME. 96 (1974) 115–117

    Google Scholar 

  6. Cebeci, T.; Qasim, J.; Na, T.Y.: Free Convective Heat Transfer from Slender Cylinders Subject to Uniform Wall Heat Flux. Letters in Heat and Mass Transfer 1 No. 2 (1974) 159–162

    Google Scholar 

  7. Cebeci, T.: Laminar Free Convection Heat Transfer from the Outer Surface of a Vertical Slender Circular Cylinder. Proc. of the 5th International Heat Transfer Conference 3, No. NC1.4 (1974) 15–19

    Google Scholar 

  8. Na, T.Y.: Numerical Solution of Natural Convection Flow Past a Non-isothermal Vertical Flat Plate. Appl. Sci. Res. 33 (1977)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, T.Y., Chiou, J.P. Laminar natural convection over a slender vertical frustum of a cone. Warme- und Stoffubertragung 12, 83–87 (1979). https://doi.org/10.1007/BF01002323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002323

Keywords

Navigation