Skip to main content
Log in

A numerical study of laminar heat transfer at bottom surface of a cavity submerged in separated flow region of duct

Eine numerische Studie zum laminaren Wärmeübergang am Boden von Vertiefungen im Bereich abgelöster Kanalströmung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

For the two cavity models whose upward and downward wall heights are different from each other, laminar heat transfer is studied numerically in a finite difference method. The effects of cavity configuration, free-stream velocity and buoyancy force on flow and temperature fields as well as heat transfer at the bottom surface are discussed.

The flow pattern of DOF (Downward-Facing cavity)-model is more intricated than that of UPF (Upward-Facing cavity)-model, depending on the aspect ratio of cavity or main flow velocity. The mean Nusselt numberNu m at the bottom surface of both cavity models tends generally to increase with increasing ReHorGr w/Re 2H . However, in the flow region ofRe H & 500 for DOF-cavity, theNu m for 0.4 ≦ D2/D1 0.6 is somewhat lower than that obtained from the other cavities and does not always increase with increasingRe H.

Zusammenfassung

Für die beiden Modelle mit stromauf oder stromab höheren Wänden wird der laminare Wärmeübergang numerisch berechnet. Die Wirkungen der Geometrie, der Freistromgeschwindigkeit und der Auftriebskraft auf Geschwindigkeits- und Temperaturfelder sowie auf den Wärmeübergang werden diskutiert.

In einer Vertiefung mit stromauf höherer Wand (DOF) ist die Strömung verwickelter als in einer mit stromab höherer Wand (UPF), abhängig vom Höhenverhältnis und der Mittelgeschwindigkeit. Die mittlere Nusselt-Zahl am Boden beider VertiefungenNu m steigt im allgemeinen an mit steigendemRe H oderGr w/Re 2H . Allerdings ist fürRe ≧ 500 bei der DOF-Vertiefung im Bereich 0,4 ≦D 2/D1 ≦ 0,6 der WertNu m etwas kleiner ist als bei der anderen Vertiefung und steigt auch nicht immer mit steigendemRe H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gr w :

Grashof number, Eq. (3)

h x′:

local heat transfer coefficient,q wx′ - θ0)

H :

duct height in upstream of cavity

k :

thermal conductivity

Nu x′:

local Nusselt number, Eq. (14)

Nu m :

mean Nusselt number, Eq. (15)

P :

dimensionless pressure,p/(ϱ0 U 20 )

Pr :

Prandtl number, Eq. (3)

q w :

heat flux at heated bottom surface

Re H :

Reynolds number, Eq. (3)

T :

dimensionless temperature, Eq. (10)

u, v :

velocity components inx- andy-directions

U 0 :

maximum velocity ofU (Y) at inflow section

U, V :

dimensionless velocity components inX- andY-directions, u/U0 and v/U0

W :

bottom width of cavity

x, y :

distances along and normal to duct wall

x′ :

distance in x-direction measured from upstream downcorner of cavity

X, Y :

dimensionless coordinates,x/W andy /W

α :

thermal diffusivity

β :

thermal expansion coefficient

C:

dimensionless vorticity

θ :

temperature

θ 0 :

temperature at flow section

v :

kinematic viscosity

ϱ 0 :

density at temperature θ0

ϕ :

functions ofψ, ζ orT

ψ :

dimensionless stream-function

ω(ϕ) :

over-relaxation parameter

References

  1. Roache, P.; Mueller, T. J.: Numerical Solutions of Laminar Separated Flows. AIAA J. 8 (1970) 530–538

    Google Scholar 

  2. Seki, N.; Fukusako, S.; Hirata, T.: Laminar Heat Transfer Downstream of a Sudden Enlargement of a Duct. Bull. of the JSME 21 (1978) 254–257

    Google Scholar 

  3. Yamamoto, H.; Seki, N.; Fukusako, S.: Heat Transfer in a Rectangular Groove with Heated Bottom Surface in Laminar Forced Fields. Trans. JSME 43 (1977) 2662–2669

    Google Scholar 

  4. Taniguchi, S.; Kiya, M.; Arie, M.: Separation Eddy in Front of a Forward-facing Step on a Plane Boundary. Bull Fac. Eng. Hokkaido Univ. 77 (1975) 1–11

    Google Scholar 

  5. Bunditkul, S.; Yang, W. L.: Laminar Transport Phenomena in Parallel Channels with a Short Flow Constriction. J. Heat Transfer 101 (1979) 217–221

    Google Scholar 

  6. Johnson, R. W.; Dhanak, A. M.: Heat Transfer in Laminar Flow Past a Rectangular Cavity with Fluid Injection. J. Heat Transfer 98 (1976) 226–231

    Google Scholar 

  7. Gosman, A. D.; Pun, W. M.; Runchal, A. K.; Spalding, D. B.; Wolfshtein, M.: Heat and Mass Transfer in Recirculating Flows. New York: Academic Press 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Seki, N. & Fukusako, S. A numerical study of laminar heat transfer at bottom surface of a cavity submerged in separated flow region of duct. Wärme- und Stoffübertragung 16, 219–227 (1982). https://doi.org/10.1007/BF01375646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01375646

Keywords

Navigation