Skip to main content
Log in

Determination of heat transfer coefficient using transient temperature response chart

Bestimmung des Wärmeübertragungskoeffizienten mit Verwendung von Aufzeichnungen der transienten Ansprechtemperatur

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

An inverse finite element computer code is developed to predict surface heat flux and surface temperature in conjunction with the measured thermocouple temperature history. Determination of convective heat-transfer coefficient and combustion gas temperature is carried out employing transient temperature response chart. Examples are illustrated which are typical of those that arise in thermal design of rocket nozzle. The results demonstrate that the method is remarkable in its ability to estimate unknown boundary conditions.

Zusammenfassung

Es wurde ein inverses Finite-Elemente-Computer-Programm entwickelt, um den Oberflächenwärmestrom und die Oberflächentemperatur aus dem mit Thermoelementen gemessenen Temperaturverlauf zu bestimmen. Die Bestimmung des konvektiven Wärmeübertragungskoeffizienten und der Verbrennungsgastemperatur ist mit Verwendung von Aufzeichnungen der transienten Ansprechtemperatur ausgeführt worden.

Für die thermische Auslegung von Raketendüsen werden einige Beispiele dargestellt. Die Ergebnisse beweisen, daß dieses Verfahren bemerkenswerte Fähigkeiten besitzt, um unbekannte Randbedingungen annähernd zu berechnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bi :

Biot number,h L/k

c :

heat capacity of the material

Fo :

Fourier number,αt/L 2

h :

convective heat-transfer coefficient

k :

thermal conductivity

L :

thickness of material

q w :

surface heat flux

r :

number of future temperature

S :

least square function

T o :

initial temperature

T g :

combustion gas temperature

T s :

surface temperature

T :

nodal temperature

t :

time

x :

abscissa

Y :

thermocouple data

θ :

dimensionless temperature, (T g−Ts)/(T g−T0)

φ :

finite element function

Δt :

time step

α :

thermal diffusivity

ϱ :

density

M :

present time step

i :

interation step index

k :

time step index

T :

transpose of matrix

References

  1. Burggraf, O.: An exact solution of the inverse problem in heat conduction theory and applications. J. Heat Transfer 82C (1964) 378–382

    Google Scholar 

  2. Beck, J. V.: Surface heat flux determination using an integral method. Nucl. Eng. Des. 7 (1968) 170–178

    Google Scholar 

  3. Beck, J. V.; Litkouhi, B.; Clair Jr, C. R. St.: Efficient sequential solution of the nonlinear inverse heat conduction problem. Num. Heat Transfer 5 (1982) 275–286

    Google Scholar 

  4. Osman, A. M.; Beck, J. V.: Nonlinear inverse problem for the estimation of time-and-space dependent heat transfer coefficients. AIAA paper 87-0150 (1987)

  5. Bass, B. R.: Applications of the finite element method to the nonlinear inverse heat conduction problem using Beck's second method. J. Eng. Ind. 102 (1980) 168–176

    Google Scholar 

  6. Mehta, R. C.: Estimation of heating rate using calorimetric probe. Rev. Sci. Instrum. 52 (1981) 1782–1784

    Google Scholar 

  7. Beck, J. V.: Nonlinear estimation applied to the nonlinear inverse heat conduction problem. Int. J. Heat Mass Transfer 13 (1970) 703–716

    Google Scholar 

  8. Mehta, R. C.: Solution of the inverse conduction problem. AIAAJ. 9, (1977) 1355–1356

    Google Scholar 

  9. Zienkiewicz, O. C.: Morgan, K.: Finite elements and approximations. New York: Wiley 1982

    Google Scholar 

  10. Owen, D. R. J.; Damjanic, F.: The stability of numerical time integration technique for transient thermal problems with special reference to reduced integration effects. Numerical Methods in Thermal Problems, Proc. Second Int. Conf. held in Venice, Italy, (1981) 487–505

  11. Beck, J. V.; Blackwell, B.; Clair, S. R. St.: Inverse Heat Conduction, Ill-Posed Problems. New York: Wiley 1985

    Google Scholar 

  12. Mehta, R. C.: Estimation of heat-transfer coefficient in a rocket nozzle. AIAAJ. 19 (1981) 1085–1086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R.C., Jayachandran, T. Determination of heat transfer coefficient using transient temperature response chart. Wärme- und Stoffübertragung 26, 1–5 (1991). https://doi.org/10.1007/BF01589897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589897

Keywords

Navigation