Skip to main content
Log in

Prediction of onset of nucleate boiling, net vapour generation and subcooled CHF in coiled tubes

Berechnung des Einsetzens von Blasensieden, der Nettodampferzeugung und der kritischen Wärmestromdichte bei unterkühltem Sieden in gewendelten Rohren

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The heat transfer characteristics of a coiled steam generating tube are very different from those of a straight tube. For example, the critical heat flux (CHF) in coiled tubes is less than that in straight tubes for subcooled boiling and significantly higher at higher qualities. In this paper, predictive methods are developed for the determination of the point of onset of nucleate boiling, the point of net vapour generation and the critical heat flux condition in curved ducts. The methods are based on the assumption that these phenomena are governed by the local hydro- and thermodynamic conditions which can be predicted using computational fluid dynamics techniques. Good agreement has been obtained with available experimental data.

Zusammenfassung

Die Wärmeübertragung in einem gewendelten Dampferzeugerrohr ist sehr verschieden von der in einem geraden Rohr. So ist zum Beispiel der kritische Wärmestrom in gewendelten Rohren geringer als im geraden Rohr für unterkühltes Sieden, aber beträchtlich höher bei höheren Dampfgehalten. In dieser Arbeit wurden Methoden entwickelt, um das Einsetzen des Blasensiedens und der Nettodampferzeugung sowie die Bedingung für den kritischen Wärmestrom in gekrümmten Kanälen vorauszuberechnen. Diese Methoden beruhen auf der Annahme, daß diese Vorgänge durch die örtlichen hydro- und thermodynamischen Bedingungen bestimmt werden, die sich aus Rechenverfahren der Fluiddynamik ermitteln lassen. Mit den verfügbaren experimentellen Daten herrschte gute Übereinstimmung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat at constant pressure

d :

tube diameter

D :

coil (bend) diameter

G :

mass flux

h :

heat transfer coefficient

i fg :

latent heat of vapourisation

Nu :

Nusselt number =hd/λ

Pe :

Peclet number =Re Pr

Pr :

Prandtl number = μC p/λ

q″:

heat flux

Re :

Reynolds number =u m d/ν

T :

temperature

u m :

mean flow velocity

x :

quality

α :

thermal diffusivity

λ :

thermal conductivity

μ :

dynamic viscosity

ϱ :

density

σ :

surface tension

a :

axial direction

b :

bulk

c :

coil

i :

inner

l :

liquid phase

m :

mean

NVG:

at the point of net vapour generation

ONB:

at the point of onset of nucleate boiling

ref:

at the reference point

s :

straight tube

sat:

saturated state

t :

tube

w :

wall

References

  1. Collier, J. G.: Convective boiling and condensation, 2nd ed., McGraw-Hill, UK 1981

    Google Scholar 

  2. Hewitt, G. F.; Delhaye, J. M.; and Zuber, N.: Multiphase science and technology. New York: Hemisphere 1986

    Google Scholar 

  3. Bergles, A. E.; Rohsenow, W. M.: The determination of forced-convection surface-boiling heat transfer. Paper no. 63-HT-22, 6th National Heat Transfer Conf., Boston, USA, 11–14 August, 1963

  4. Davis, E. J.; Anderson, G. H.: The incipience of nucleate boiling in forced convection flow. AIChE J. 12 (1966) pp. 774–780

    Google Scholar 

  5. Polonsky, V. S.; Batalo, A. P.: Private communication (1989)

  6. Jones, I. P.; Kightley, J. R.; Thompson, C. P.; Wilkes, N. S.: FLOW3D, a computer code for the prediction of laminar and turbulent flow and heat transfer: Release 1. UKAEA Report No. AERE R 11825 (1989)

  7. Jayanti, S.: Contribution to the study of non-axisymmetric flows, Ph. D. thesis, Imperial College, University of London, UK (1990)

    Google Scholar 

  8. Jayanti, S.; Hewitt, G. F.; Kightley, J. R.: Fluid flow in curved ducts, Int. J. Num. Methods in Fluids 10 (1990) pp. 569–589

    Google Scholar 

  9. Rodi, W.: Turbulence models and their application in hydraulics: A state of the art review, Presented by the IAHR Section on Fundamentals Division II: Experimental and Mathematical Fluid Dynamics, 2nd ed 1984

  10. Rogers, G. F. C.; Mayhew, Y. R.: Heat transfer and pressure loss in helically cooled tubes with turbulent flow”, Int. J. Heat Mass Transfer 7 (1964) pp. 1207–1216

    Google Scholar 

  11. Saha, P.; Zuber, N.: Point of net vapour generation and vapour void fraction in subcooled boiling, Paper B. 4.7, vol. 2, 5th Int. Heat Transfer Conf., Tokyo, September 1974

  12. Miropolskiy, Z. L.; Pikus, V. J.: Critical boiling heat fluxes in curved channels. Heat Transfer-Soviet Research 1 (1969) pp. 74–79

  13. Berthoud, G.; Jayanti, S.: Characterisation of dryout in helical coils. Int. J. Heat Mass Transfer 33 (1990) pp. 1451–1463

    Google Scholar 

  14. Jensen, M. K.: Boiling heat transfer and critical heat flux in helical coils, Ph D Thesis, Iowa State University, Ames, Iowa, USA (1980)

    Google Scholar 

  15. Dittus, F. W.; Boelter, L. M. K.: Univ. of Calif. (Berkeley) Pub. Eng. 2 (1930) p. 443. Also see “Heat Transfer” by J. P. Holman. New York: McGraw-Hill 1981

    Google Scholar 

  16. Hewitt, G. F.: Burnout, Ch. 5 of Two-phase flow and heat transfer in the power and process industries by A. E. Bergles, J. G. Collier, J. M. Delhaye, G. F. Hewitt and F. Mayinger, New York Hemisphere 1981

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.-Ing. F. Mayinger's 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayanti, S., Hewitt, G.F. Prediction of onset of nucleate boiling, net vapour generation and subcooled CHF in coiled tubes. Wärme- und Stoffübertragung 26, 301–305 (1991). https://doi.org/10.1007/BF01591662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591662

Keywords

Navigation