Skip to main content
Log in

The effect of ionization on heat transfer to wires immersed in a highly thermallyionized plasma

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Results obtained with a previously developed technique for measuring local heat transfer to bare and ceramic coated metal wires from a dense, highly thermallyionized plasma are presented and compared with theoretical predictions. A free-burning arc in argon at atmospheric pressure provides a plasma in local thermodynamic equilibrium. Wire probes are swept through this plasma in planes parallel to the anode. The wires do not draw a net current from the plasma. Experimental evidence indicates that the layer between the undisturbed plasma and the probe surface is not in chemical equilibrium. The data show that heat transfer to the wire in this situation is dominated by the energy transport associated with electron and ion partial currents to the probe surface as determined by the potential of the probe with respect to the plasma. The data obtained using this technique provide an experimentally verified model for the heat transfer to wires immersed in a plasma over a wide range of plasma conditions including a 100 percent variation in the degree of ionization.

Zusammenfassung

Es werden Versuchsergebnisse mitgeteilt, die mit einer früher entwickelten Methode zur Messung der örtlichen Wärmeübertragung an blanke und keramikumhüllte Metalldrähte von einem thermisch hochionisierten Plasma gewonnen wurden. Diese Ergebnisse werden mit der Theorie verglichen. Ein frei brennender Bogen in Argon bei Atmosphärendruck ergibt ein Plasma im lokalen thermodynamischen Gleichgewicht. In Ebenen parallel zur Anode werden Drahtsonden durch das Plasma geschwenkt. Die Drähte entziehen dem Plasma keinen Nettostrom. Durch Versuch wird festgestellt, daß die Schicht zwischen ungestörtem Plasma und Sondenoberfläche nicht im chemischen Gleichgewicht ist. Die Werte zeigen, daß hierbei die Wärmeübertragung zum Draht bestimmt wird durch den Energietransport der Teilströme von Elektronen und Ionen zur Sondenoberfläche, wie er sich aus dem Potential der Sonde in Bezug auf das Plasma ergibt. Diese Versuchstechnik liefert ein experimentell bestätigtes Modell für den Wärmeübergang an in Plasma eingetauchte Drähte in einem weiten Bereich der Plasma-Zustandsgrößen, einschließlich einer Variation des Ionisationsgrades von hundert Prozent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross-sectional area of probe

Cp :

specific heat at constant pressure

D:

wire diameter

Db :

ambipolar diffusion coefficient

e:

unit charge

i:

enthalpy

j:

current density

k:

thermal conductivity

kB :

Boltzmann constant

L:

length of wire immersed in plasma

n:

particle number density

q:

heat flux (heat transfer per unit area and time)

rp :

probe radius

Re :

electrical resistance

T:

temperature

VF :

floating potential of probe with respect to the plasma=Vplasma−Vprobe

a :

thermal diffusivity

δ:

boundary layer thickness

Δ:

difference

μ :

dynamic viscosity

v :

kinematic viscosity

ξ:

degree of ionization=nelectron/(nion+ nneutral) (singly charged ions only)

ρ :

mass density

ρ e :

electrical resistivity

τ :

characteristic time

Φ :

electron work function

Xi:

ionization energy

NuD :

Nusselt number based on wire diameter=qD/kΔT

Pr:

Prandtl number=μcp/k

ReD :

Reynolds number based on wire diameter=UD/v

Sc:

Schmidt number=v/Damb

ψ :

dimensionless probe potential=eVF/kBTplasma

References

  1. Dix, D. M.: Energy Transfer Processes in a Partially Ionized Two-Temperature Gas. AIAA J. 2 (1964) 2081/2090.

    Google Scholar 

  2. Finson, M. L., Kemp, H. H.: Theory of Stagnation-Point Heat Transfer in Ionized Monatomic Gases. Physics of Fluids 8 (1965) 201/204.

    Article  Google Scholar 

  3. Pallone, A., Van Tassell, W.: Effects of Ionization on Stagnation Point Heat Transfer in Air and in Nitrogen. Physics of Fluids 6 (1963) 983/986.

    Article  Google Scholar 

  4. Park, C.: Heat Transfer from Nonequilibrium Ionized Argon Gas. AIAA J., 2 (1964) 169.

    Google Scholar 

  5. Rose, P. H., Stankevics, J. O. A.: Heat Transfer Measurements in Partially Ionized Air. AIAA J. 3 (1965) 1623/1631.

    Google Scholar 

  6. Eckert, E. R. G., Pfender, E.: Advances in Plasma Heat Transfer. Advances in Heat Transfer 4 Academic Press, Inc., N.Y. (1967) 229/316.

    Google Scholar 

  7. Mason, R. C.: Probe Measurements on High Pressure Arcs. Physical Review 51 (1937) 28/42.

    Article  Google Scholar 

  8. Grey, J., Jacobs, P. F.: Cooled Electrostatic Probe. AIAA J. 5 (1967) 84/90.

    Google Scholar 

  9. Lam, S. H.: Plasma Diagnostics with Moderately Large Langmuir Probes. Physics of Fluids 8 (1965) 1002/1004.

    Google Scholar 

  10. Su, C. H., Lam, S. H.: Continuum Theory of Spherical Electrostatic Probes. Physics of Fluids 6 (1963) 1479/1491.

    Article  Google Scholar 

  11. Waymouth, J. F.: Perturbation of a Plasma by a Probe. Physics of Fluids 7 (1964) 1843/1854.

    Google Scholar 

  12. Petrie, T. W., Pfender, E.: A Sweeping Wire Probe for the Measurement of Local Heat Transfer in Plasmas. Progress in Heat and Mass Transfer 2 London: Pergamon Press (1969) 459/473.

    Google Scholar 

  13. Olsen, H. N.: Thermal and Electrical Properties of an Argon Plasma. Physics of Fluids 2 (1959) 614/623.

    Article  Google Scholar 

  14. Olsen, H. N.: The Electric Arc as a Light Source for Quantitative Spectroscopy. J. Q. S. R. T. 3 (1964) 305/333.

    Google Scholar 

  15. Olsen, H. N.: The Measurement of Argon Transition Probabilities and Computation of Thermodynamic Properties of the Argon Plasma. Proc. Fifth Biennial Gas Dynamics Symposium Evanston: NW University Press (1963).

  16. DeVoto, R. S.: Transport Coefficients of Partially Ionized Argon. Physics of Fluids 10 (1967) 354/364.

    Google Scholar 

  17. Petrie, T. W., Pfender, E.: The Effect of the Cathode Tip on Temperature and Velocity Fields in a Gas Tungsten Arc. Welding J., Research Suppl. 49 (1970) 588/596.

    Google Scholar 

  18. Schoeck, P. A.: An Investigation of the Energy Transfer to the Anode of High Intensity Arcs in Argon. Ph. D. Thesis, University of Minnesota (1961).

  19. Barzelay, M. E.: Continuum Radiation from Partially Ionized Argon. AIAA J. 4 (1966) 815/822.

    Google Scholar 

  20. Schlichting, H.: Boundary Layer Theory N. Y., McGraw-Hill (1960) 153.

    Google Scholar 

  21. Eckert, E. R. G., Soehngen, E.: Distribution of Heat Transfer Coefficients around Circular Cylinders in Crossflow at Reynolds Numbers from 20 to 500. Trans. ASME 74 (1952) 343/347.

    Google Scholar 

  22. Kimura, I., Kanzawa, A.: Experiments on Heat Transfer to Wires in a Partially Ionized Argon Plasma. AIAA J. 3 (1965) 476/481.

    Google Scholar 

  23. Handbook of Chemistry and Physics. 43rd edition Cleveland: Chemical Rubber Publishing Co. (1961).

  24. Sutton, G. W., Sherman, A.: Engineering Magnetohydrodynamics N. Y. McGraw-Hill (1965) 100/105.

    Google Scholar 

  25. Kreith, F.: Principles of Heat Transfer (Int. Textbook Co., Scranton, Pa., 1958).

    Google Scholar 

  26. Chapman, S., Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases. Cambridge: University Press (1961) 172, 220/223.

    Google Scholar 

  27. Jeans, J. H.: An Introduction to the Kinetic Theory of Gases. Cambridge: University Press (1962) 49, 138, 176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, T.W., Pfender, E. The effect of ionization on heat transfer to wires immersed in a highly thermallyionized plasma. Warme- und Stoffubertragung 5, 85–100 (1972). https://doi.org/10.1007/BF01438410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438410

Keywords

Navigation