Skip to main content
Log in

Short-term perfusion and “Equilibration” of canine kidneys with protective solutions

  • Published:
Urological Research Aims and scope Submit manuscript

Summary

Kidneys were perfused either with Euro-Collinssolution or with HTK-solution of Bretschneider. The perfusion pressure as well as the perfusion flow were measured during a six-minute perfusion. The perfusion resistance was higher in Euro-Collins-kidneys than during HTK-perfusion. The venous outflow of the kidney as well as the ureteral outflow was measured during each minute of the perfusion and has analysed for osmolality, and for sodium and potassium concentrations. In Euro-Collins-kidneys a complete “equilibration” of the extracellular space was not achieved, while during HTK-perfusion concentrations in the venous as in the tubular outflow, similar to those in the HTK-solution itself, could be reached. At the end of the different perfusions, tissue was analysed for biochemical parameters such as ATP, ADP, AMP and lactate as well as for morphological features. Lactate had increased and ATP had decreased during perfusion with Euro-Collins-solution, while ATP had not changed and lactate had decreased during perfusion with HTK-solution. Normal glomerular, tubular and dilated vascular structures can be seen after HTK-perfusion, while a glomerular and vascular contraction takes place during Euro-Collins-perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews PM, Coffey AK (1982) Factors that improve the preservation of nephron morphology during cold storage. Lab Invest 46:100–120

    Google Scholar 

  2. Belzer FO, Ashby BS, Dunphy JE (1967) Twenty-four hour and 72-hour preservation of canine kidneys. Lancet II:536

    Google Scholar 

  3. Bergstrom J, Collste H, Groth C, Hultman E, Melin B (1971) Water, electrolyte and metabolite content in cortical tissue from dog kidneys preserved by hypothermia. Proc Eur Dial Transplant Assoc VIII:313–321

    Google Scholar 

  4. Bretschneider HJ (1964) Überlebenszeit und Wiederbelebungszeit des Herzens bei Normo- und Hypothermie. Verh Dtsch Ges Herz-Kreislaufforsch 30:11–34

    Google Scholar 

  5. Bretschneider HJ, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG (1975) Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis. J Cardiovasc Surg 16:241–260

    Google Scholar 

  6. Bretschneider HJ (1980) Myocardial protection. Thorac Cardiovasc Surg 28:295–302

    Google Scholar 

  7. Bretschneider HJ, Gebhard MM, Preusse CJ (1984) Cardioplegia. Principles and problems. In: Sperelakis N (ed) Physiology and pathophysiology of the heart. Martinus Nijhoff, Boston, pp 605–616

    Google Scholar 

  8. Coffey AK, Andrews PM (1983) Ultrastructure of kidney preservation: varying the amount of an effective osmotic agent in isotonic and hypertonic preservation solution. Transplantation 35:136–143

    Google Scholar 

  9. Collins GM, Bravo-Shugarman M, Terasaki PD (1969) Kidney preservation for transportation. Lancet II:1219–1222

    Google Scholar 

  10. Deetjen P, Kramer K (1961) Die Abhängigkeit des O2-Verbrauches der Niere von der Na+-Rückresorption. Pfluegers Arch 273:636–650

    Google Scholar 

  11. Downes G, Hoffmann R, Huang J, Belzer FO (1973) Mechanism of action of washout solutions for kidney preservation. Transplantation 16:46–53

    Google Scholar 

  12. Fleckenstein-Grün G, Fleckenstein A (1980) Calcium-Antagonismus, ein Grundprinzip der Vasodilatation. In: Fleckenstein A, Roskamm H (Hrsg), Calcium-Antagonismus, Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Flores J, Dibona DR, Beck CH, Leaf A (1972) The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest 51:118–126

    Google Scholar 

  14. Gerlach E, Bader W, Schwoerer W (1961) Über den Stoffwechsel säurelöslicher Phosphorverbindungen in der Rattenniere. Pfluegers Arch 272:407

    Google Scholar 

  15. Greger R (1985) Ion transport mechnism in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65: 760–797

    Google Scholar 

  16. Guder WG, Wirtensohn G (1981) Renal turnover of substrates. In: Greger R, Lang F, Silbernagel S (eds) Renal transport of organic substances. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Günther R, Silbernagel St (1981) Renal handling of L-Histidine studied by continuous microperfusion and free flow micropuncture in the rat. Pfluegers Arch 389:137–142

    Google Scholar 

  18. Gutmann J, Wahlefeld AW (1974) L-(+)-Lactat, Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (Hrsg) Methoden der enzymatischen Analyse, Aufl 3, Bd II. Chemie Verlag, Weinheim, S 1510–1514

    Google Scholar 

  19. Hargitay B, Kuhn W (1951) Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z Elektrochemie 55:539–558

    Google Scholar 

  20. Jamison RL, Bennett CM, Berliner RW (1967) Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212: 357–366

    Google Scholar 

  21. Kallerhoff M, Hölscher M, Kläß G, Bretschneider HJ (1981) The equilibration proceedings at a 12′ long perfusion of kidneys with HTP-solution of Bretschneider. Pfluegers Arch 389: R43

  22. Kallerhoff M, Hölscher M, Kehrer G, Kläß G, Bretschneider HJ (1985) Effects of preservation conditions and temperature on tissue acidification in canine kidneys. Transplantation 39: 485–489

    Google Scholar 

  23. Kallerhoff M, Kehrer G, Siekmann W, Blech M, Gebhard MM, Helmchen U, Bretschneider HJ (1985) Experimentelle Anwendung der kardioplegischen Lösung HTK nach Bretschneider für eine in-situ-Protektion von Nieren. In: Harzmann R (Hrsg) Experimentelle Urologie, Springer, Berlin Heidelberg New York, S 180–188

    Google Scholar 

  24. Kallerhoff M, Blech M, Kehrer G, Kleinert H, Schnabel PhA, Siekmann W, Helmchen U, Bretschneider HJ (1985) A new method for perfusion fixation of dog kidneys. Pfluegers Arch 405 (Suppl 2):R33

    Google Scholar 

  25. Kallerhoff M, Blech M, Kehrer G, Kleinert H, Siekmann W, Helmchen U, Bretschneider HJ (1986) Postischemic renal function after kidney protection with the HTK-solution of Bretschneider. Urol Res 14:271–278

    Google Scholar 

  26. Kehrer G, Gebhard MM, Kallerhoff M, Siekmann W, Blech M, Helmchen U, Bretschneider HJ (1984) The influence of glucose premedication on perfusion resistance, perfusional diuresis, and equilibration of the dog kidney during perfusion with Bretschneider's cardioplegic solution HTK in standardized anaesthesia. Pfluegers Arch 400:R22

    Google Scholar 

  27. Kehrer G, Kallerhoff M, Probst R, Siekmann W, Blech M, Bretschneider HJ, Helmchen U (1985) Construction and experimental application of a catheter for selective arterial kidney perfusion in situ. Urol Res 13:85–89

    Google Scholar 

  28. Kehrer G, Blech M, Kallerhoff M, Kleinert H, Bretschneider HJ (1985) Influence of preischemic perfusion resistance on postischemic renal function. Pfluegers Arch 405:R33

    Google Scholar 

  29. Kokko JP, Rector FC (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    Google Scholar 

  30. Kramer K, Thurau K, Deetjen P (1960) Hämodynamik des Nierenmarks. I. Mitteilung. Capillare Passagezeit, Blutvolumen, Durchblutung, Gewebehämatocrit und O2-Verbrauch des Nierenmarks in situ. Pfluegers Arch 270:251–269

    Google Scholar 

  31. Kuhn W, Ryffel K (1942) Herstellung konzentrierter Lösungen aus verdünnten durch bloße Membranwirkung. Hoppe Seylers Z Physiol Chem 276:145–178

    Google Scholar 

  32. Leaf A (1970) Regulation of intracellular fluid volume and disease. Am J Med 49:291

    Google Scholar 

  33. Levinsky NG, Berliner RW (1959) The role of urea in the urine concentrating mechanism. J Clin Invest 38:741–748

    Google Scholar 

  34. Levy MN (1959) Oxygen consumption and blood flow in the hypothermic perfused kidney. Am J Physiol 197:1111

    Google Scholar 

  35. Mason J, Beck F, Dörge A, Rick R, Thurau K (1981) Intracellular electrolyte composition following renal ischemia. Kidney Int 20:61

    Google Scholar 

  36. Pfaller W (1981) Morphologic analysis of tubular transport. In: Greger R, Lang F, Silbernagel S (eds) Renal transport of organic substances. Springer, Berlin Heidelberg New York

    Google Scholar 

  37. Preusse CJ, Gebhard MM, Bretschneider HJ (1981) Myocardial “Equilibration Processes” and myocardial energy turnover during initiation of artificial cardiac arrest with cardioplegic solution-Reasons for a sufficiently long cardioplegic perfusion. Thorac Cardiovasc Surg 29:71–76

    Google Scholar 

  38. Ruedas G (1980) Changes in flow resistance in kidney vessels of dogs by hypothermic hyperosmotic perfusion. Urol Int 35:81–90

    Google Scholar 

  39. Sacks SA, Petritsch PH, Kaufmann JJ (1973) Canine kidney preservation using a new perfusate. Lancet II:1024–1028

    Google Scholar 

  40. Siekmann W, Blech M, Kallerhoff M, Kehrer G, Kleinert H, Bretschneider HJ, Helmchen U (1985) Morphologische Befunde nach zweistündiger kompletter Nierenischämie unter Anwendung verschiedener Protektionsverfahren. Verh Dtsch Ges Pathol 69:612

    Google Scholar 

  41. Silbernage S (1981) Renal transport of amino acids and oligopeptides. In: Greger R, Lang F, Silbernagel S (eds) Renal transport of organic substances. Springer, Berlin Heidelberg New York, pp 93–117

    Google Scholar 

  42. Southard JH, Rice MJ, Ammetani MS, Belzer FO (1985) Effects of short-term hypothermic perfusion and cold storage on function of the isolated-perfusion dog kidney. Cryobiology 22:147–155

    Google Scholar 

  43. Thorn W, Heimann J, Müldener B, Gereken G (1957) Beitrag zum Stoffwechsel von Leber, Niere, Herz und Skelettmuskulatur in Asphyxie, Anoxie und bei Hypothermie. Pfluegers Arch 265:34–54

    Google Scholar 

  44. Ullrich KJ, Drenckhahn FO, Jaransch KH (1955) Untersuchungen zum Problem der Harnkonzentrierung und-verdünnung. Über das osmotische Verhalten von Nierenzellen und die begleitende Elektrolytanhäufung in Nierengewebe bei verschiedenen Diuresezuständen. Arch Ges Physiol 261:62–77

    Google Scholar 

  45. Wesson LG, Colburg JE, DeGutman A, Elsasser W, Dunn St (1979) Extracellular fluid of the kidney preserved by the Collins technique. Transplantation 27:380–383

    Google Scholar 

  46. Wirz H (1953) Der osmotische Druck des Blutes in der Nierenpapille. Helv Physiol Acta 11:20–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, SFB 89-Kardiologie Göttingen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallerhoff, M., Blech, M., Kehrer, G. et al. Short-term perfusion and “Equilibration” of canine kidneys with protective solutions. Urol. Res. 15, 5–12 (1987). https://doi.org/10.1007/BF00256327

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00256327

Key words

Navigation