Skip to main content
Log in

Intraischemic metabolic effects of different disaccharides on protected canine kidneys

  • Original Articles
  • Published:
Urological Research Aims and scope Submit manuscript

Summary

The addition of the dissaccharides maltose (10, 20, 30 mM) and sucrose (30, 60 mM) to Bretschneider's organ protective HTK solution was evaluated to improve renal protection by an enhanced glycolytic energy supply. Canine kidneys were perfused for 8 min with either HTK solution or HTK solution containing additional disaccharides. After nephrectomy the kidneys were incubated at 25°C and metabolic parameters were determined at regular intervals. Maltose and sucrose are slowly cleaved during renal ischemia but maltose distinctly faster than sucrose. Maltose increases intraischemic ATP supply. However, 30 mM maltose was no better than 10 mM. 60 mM sucrose was about as effective for glycolysis as 10 mM maltose. However, possibly due to fructose release there was an accelerated decrease of adenine nucleotides with sucrose. Although fructose enters glycolysis it seems to have negative side-effects. Hence, probably neither sucrose nor fructose are appropriate for renal substrate supply during ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews PM, Coffey AK (1982) Factors that improve the preservation of nephron morphology during cold storage. Lab Invest 46:100–120

    Google Scholar 

  2. Bastin J, Cambon N, Thompson M, Lowry OH, Burch HB (1987) Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Int 31:1239–1247

    Google Scholar 

  3. Bergmeyer HU, Bernt E, Schraidt F, Stork H (1974) D-Glucose, Bestimmung mit Hexokinase und Glucose-6-phosphat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1241–1259

    Google Scholar 

  4. Brazy PC, Mandel LJ, Gullans SR, Soltoff SP (1984) Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am J Physiol 247:575–581

    Google Scholar 

  5. Bretschneider HJ, Gebhard MM, Preusse CJ (1981) Amelioration of myocardial protection by improvement of capacity and effectiveness of anaerobic glycolysis. In: Isselhard W (ed) Myocardial protection for cardiac surgery. Pharmazeutische Verlagsgesellschaft. München, pp 63–71

    Google Scholar 

  6. Bretschneider HJ, Helmchen U, Kehrer G (1988) Nierenprotektion. Klin Wochenschr 66:817–827

    Google Scholar 

  7. Burch HB, Choi S, Dence CN, Alvey TR, Cole BR, Lowry OH (1980) Metabolic effects of large fructose loads in different parts of the rat nephron. J Biol Chem 255:8239–8244

    Google Scholar 

  8. Fischer JH, Knupfer P, Beyer M (1985) Flush solution 2, a new concept for one-to-three-day hypothermic renal storage preservation. Transplantation 39:122–126

    Google Scholar 

  9. Gutmann J, Wahlefeld AW (1974) L-(+)-Lactat, Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der Enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1510–1514

    Google Scholar 

  10. Hers HG, Van Schaftingen E (1982) Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J 206:1–12

    Google Scholar 

  11. Iles RA, Griffith JR, Stevens AN, Gadian DG, Porteous R (1980) Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. Biochem J 192:191–202

    Google Scholar 

  12. Kallerhoff M, Hölscher M, Kehrer G, Kläß G, Bretschneider HJ (1985) Effects of preservation conditions and temperature on tissue acidification in canine kidneys. Transplantation 39:485–489

    Google Scholar 

  13. Kehrer G, Blech M, Gebhard MM, Kallerhoff M, Siekmann W, Helmchen U, Bretschneider HJ (1985) Günstige Effekte einer Glucose-Prämedikation auf den anaeroben Energieumsatz der Hundeniere bei Protektion mit einer histidingepufferten Lösung im Vergleich zu einer Osmofundin-Prämedikation. In: Harzmann R et al. (eds) Experimentelle Urologie, Springer, Berlin Heidelberg New York, pp 172–179

    Google Scholar 

  14. Kehrer G, Kallerhoff M, Probst R, Siekmann W, Blech M, Bretschneider HJ, Helmchen U (1985) Construction and experimental application of a catheter for selective arterial kidney perfusion in situ. Urol Res 13:85–89

    Google Scholar 

  15. Kehrer G, Blech M, Kallerhoff M, Kleinert H, Langheinrich M, Bretschneider HJ (in preparation) Glucose content and efficiency of glycolysis in protected ischemic kidney of different species.

  16. Kübler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1:351–377

    Google Scholar 

  17. Miller TB (1978) Cyclic AMP-mediated activation of hepatic glycogenolysis by fructose. Biochim Biophys Acta 540:151–161

    Google Scholar 

  18. Preusse CJ, Gebhard MM, Bretschneider HJ (1982) Interstitial pH value in the myocardium as indicator of ischemic stress of cardioplegically arrested hearts. Basic Res Cardiol 77:372–387

    Google Scholar 

  19. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23:99–134

    Google Scholar 

  20. Regan JJ, Doorneweerd DD, Gilboe DP, Nuttall FQ (1980) Influence of fructose on the glycogen synthase and phosphorylase systems in rat liver. Metabolism 29:965–969

    Google Scholar 

  21. Sussman I, Erecinska M, Wilson DF (1980) Regulation of cellular energy metabolism. The Crabtree effect. Biochim Biophys Acta 591:209–23

    Google Scholar 

  22. Van de Werve G, Hers HG (1979) Mechanism of activation of glycogen phosphorylase by fructose in the liver. Biochem J 178:119–126

    Google Scholar 

  23. Venkatachalam MA, Patel YJ, Kreisberg JI, Weinberg JM (1988) Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). J Clin Invest 81:745–758

    Google Scholar 

  24. Woods HF, Eggleston LV, Krebs HA (1970) The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J 119:501–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, SFB 330-Organ Protection, Göttingen, Federal Republic of Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehrer, G., Blech, M., Kallerhoff, M. et al. Intraischemic metabolic effects of different disaccharides on protected canine kidneys. Urol. Res. 17, 371–376 (1989). https://doi.org/10.1007/BF00510529

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00510529

Key words

Navigation