Skip to main content
Log in

Elevated concentrations of the small stress protein HSP27 in rat renal tumors

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The expression of two small stress proteins, αB crystallin and the 27-kDa heat shock protein (HSP27), was studied quantitatively and immunohistochemically in normal kidney and renal tumors in rats. Levels of αB crystallin in renal cell tumors tended to be higher than in normal kidney (P = 0.07), but with a wide range of values, whereas they were significantly lower in mesenchymal tumors (P < 0.0001). In contrast, HSP27 concentrations in both renal cell (mean ± SD: 1790 ± 940 ng/mg protein,n = 15) and mesenchymal (1260 ± 1080 ng/mg protein,n = 10) tumors were significantly higher than the normal kidney value (142 ± 30 ng/mg protein,n = 10,P < 0.0001). A positive correlation was found between αB crystallin and HSP27 levels limited to the renal cell tumor case (Pearson's correlation coefficient,r = 0.68,P < 0.01). Immunohistochemistry revealed the loops of Henle to be positive for αB crystallin, whereas HSP27 staining was positive in glomerular and interstitial vascular walls and epithelial cells of proximal and distal tubules. Positive immunostaining for αB crystallin was demonstrated in six of nine renal cell tumors (67%) studied and for HSP27 in all of the nine cases (100%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannasch P, Zerban H (1990) Animal models and renal carcinogenesis. In: Eble JN (ed) Tumors and tumor-like conditions of the kidneys and ureters. Churchill Livingstone, New York, p 1

    Google Scholar 

  2. Beckmann RP, Mizzen LA, Welch WJ (1990) Interaction of lisp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850

    PubMed  Google Scholar 

  3. Bennington JL, Beckwith JB (1975) Renal adenocarcinoma. In: Firminger HI (ed) Tumors of the kidney, renal pelvis, and ureter. Fascicle 12, Armed Forces Institute of Pathology, Washington DC, p 93

    Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    PubMed  Google Scholar 

  5. Chiesa R, McDermott MJ, Mann E, Spector A (1990) The apparent molecular size of native α-crystallin B in non-lenticular tissues. FEBS Lett 268:222

    PubMed  Google Scholar 

  6. Dasgupta S, Hohman TC, Carper D (1992) Hypertonic stress induces αB-crystallin expression. Exp Eye Res 54:461

    PubMed  Google Scholar 

  7. Delhaye M, Gulbis B, Galand P, Mairesse N (1992) Expression of 27-kD heat-shock protein isoforms in human neoplastic and nonneoplastic liver tissues. Hepatology 16:382

    PubMed  Google Scholar 

  8. Dubin RA, Wawrousek EF, Piatigorsky J (1989) Expression of the murine αB-crystallin gene is not restricted to the lens. Mol Cell Biol 9:1083

    PubMed  Google Scholar 

  9. Ellis RJ, van der Vies SM (1991) Molecular chaperones. Ann Rev Biochem 60:321

    PubMed  Google Scholar 

  10. Head MW, Corbin E, Goldman JE (1994) Coordinate and independent regulation of αB-crystallin and HSP27 expression in response to physiological stress. J Cell Physiol 159:41

    PubMed  Google Scholar 

  11. Hickey E, Brandon SE, Potter R, Stein G, Stein J, Weber LA (1986) Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucl Acids Res 14:4127

    PubMed  Google Scholar 

  12. Horwitz J (1992) α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449

    PubMed  Google Scholar 

  13. Huot J, Roy G, Lambert H, Chrétien P, Landry J (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 51:5245

    PubMed  Google Scholar 

  14. Inaguma Y, Shinohara H, Goto S, Kato K (1992) Translocation and induction of αB crystallin by heat shock in rat glioma (GA-1) cells. Biochem Biophys Res Commun 182:844

    PubMed  Google Scholar 

  15. Inaguma Y, Goto S, Shinohara H, Hasegawa K, Ohshima K, Kato K (1993) Physiological and pathological changes in levels of the two small stress proteins, HSP27 and αB crystallin, in rat hindlimb muscles. J Biochem (Tokyo) 114:378

    Google Scholar 

  16. Ingolia TD, Craig EA (1982) Four smallDrosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360

    PubMed  Google Scholar 

  17. Ito N (1973) Experimental studies on tumors of the urinary system of rats induced by chemical carcinogens. Acta Pathol Jpn 23:87

    PubMed  Google Scholar 

  18. Iwaki T, Kume-Iwaki A, Goldman JE (1990) Cellular distribution of αB-crystallin in non-lenticular tissues. J Histochem Cytochem 38:31

    PubMed  Google Scholar 

  19. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517

    PubMed  Google Scholar 

  20. Kato K, Shinohara H, Kurobe N, Inaguma Y, Shimizu K, Ohshima K (1991) Tissue distribution and developmental profiles of immunoreactive αB crystallin in the rat determined with a sensitive immunoassay system. Biochim Biophys Acta 1074:201

    PubMed  Google Scholar 

  21. Kato K, Shinohara H, Goto S, Inaguma Y, Morishita R, Asano T (1992) Copurification of small heat shock protein with αB crystallin from human skeletal muscle. J Biol Chem 267:7718

    PubMed  Google Scholar 

  22. Kato K, Goto S, Hasegawa K, Inaguma Y (1993) Coinduction of two low-molecular-weight stress proteins, αB crystallin and HSP28, by heat or arsenite stress in human glioma cells. J Biochem (Tokyo) 114:640

    Google Scholar 

  23. Kato K, Goto S, Hasegawa K, Shinohara H, Inaguma Y (1993) Responses to heat shock of αB crystallin and HSP28 in U373 MG human glioma cells. Biochim Biophys Acta 1175:257

    PubMed  Google Scholar 

  24. Klemenz R, Fröhli E, Steiger RH, Schäfer R, Aoyama A (1991) αB-Crystallin is a small heat shock protein. Proc Natl Acad Sci USA 88:3652

    PubMed  Google Scholar 

  25. Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151

    PubMed  Google Scholar 

  26. Love S, King RJB (1994) A 27 kDa heat shock protein that has anomalous prognostic powers in early and advanced breast cancer. Br J Cancer 69:743

    PubMed  Google Scholar 

  27. Mairesse N, Delhaye M, Galand P (1990) Enhanced expression of a 27 kD protein during dimethylnitrosamine-induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 170:908

    PubMed  Google Scholar 

  28. Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. J Biol Chem 268:1046

    PubMed  Google Scholar 

  29. Nakano Y (1991) Induction of renal pelvic tumors in rats byN-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) and uracil. Nagoya J Med Sci 53:65

    Google Scholar 

  30. Oesterreich S, Weng C, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SAW (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53:4443

    PubMed  Google Scholar 

  31. Richards EH, Hickey E, Weber L, Masters JRW (1996) Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 56:2246

    Google Scholar 

  32. Smoyer WE, Gupta A, Mundel P, Ballew JD, Welsh MJ (1996) Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J Clin Invest 97:2697

    PubMed  Google Scholar 

  33. Storm FK, Mahvi DM, Gilchrist KW (1993) HSP-27 has no diagnostic or prognostic significance in prostate or bladder cancers. Urology 42:379

    PubMed  Google Scholar 

  34. Takashi M, Haimoto H, Murase T, Mitsuya H, Kato K (1988) An immunochemical and immunohistochemical study of 5100 protein in renal cell carcinoma. Cancer 61:889

    PubMed  Google Scholar 

  35. Takashi M, Koshikawa T, Kurobe N, Kato K (1989) Elevated concentrations of brain-type glycogen phosphorylase in renal cell carcinoma. Jpn J Cancer Res 80:975

    PubMed  Google Scholar 

  36. Takashi M, Sakata T, Nakano Y, Takagi Y, Yamada Y, Hibi H, Miyake K, Shirai T (1994) Initiation-stage enhancement by uracil ofN-ethyl-N-hydroxyethylnitrosamine-induction of kidney carcinogenesis in rats. Cancer Lett 87:151

    PubMed  Google Scholar 

  37. Takashi M, Sakata T, Nakano Y, Yamada Y, Miyake K, Kato K (1994) Elevated concentrations of theβ-subunit of S100 protein in renal cell tumors in rats. Urol Res 22:251

    PubMed  Google Scholar 

  38. Takashi M, Sakata T, Inaguma Y, Kato K (1996) Elevated concentrations of γ-enolase in renal cell tumors in rats: similarity to renal cell carcinoma in man. Urol Res 24:375

    PubMed  Google Scholar 

  39. Têtu B, Lacasse B, Bouchard H-L, Lagacé R, Huot J, Landry J (1992) Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: a clinicopathological and immunohistochemical study. Cancer Res 52:2325

    PubMed  Google Scholar 

  40. Thor A, Benz C, Moore D II, Goldman E, Edgerton S, Landry J, Schwartz L, Mayall B, Hickey E, Weber LA (1991) Stress response protein (srp-27) determination in primary human breast carcinomas: clinical, histologic, and prognostic correlations. J Natl Cancer Inst 83:170

    PubMed  Google Scholar 

  41. Zantema A, Verlaan-De Vries M, Maasdam D, Bol S, van der Eb A (1992) Heat shock protein 27 and αB-crystallin can form a complex, which dissociates by heat shock. J Biol Chem 267:12936

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takashi, M., Sakata, T., Ohmura, M. et al. Elevated concentrations of the small stress protein HSP27 in rat renal tumors. Urol. Res. 25, 173–177 (1997). https://doi.org/10.1007/BF00941978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00941978

Key words

Navigation