Skip to main content
Log in

Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

The voltage-dependency of alamethicin pore formation is explained by a flip-flop gating mechanism of single alamethicin molecules. The energetically preferred aggregate structure is changed from antiparallel to parallel molecule orientation by membrane voltage application. The electrical field is sensed by the permanent dipole of the α-helical molecule part which spans the hydrophobic membrane core. Ion conducting pore and pore states result from electrostatic repulsion of a varying number of parallel dipoles which arrange circularly. This model is consistent with published data and with two additional experimental facts, that pore state distributions are ionic strength dependent and pore state conductances depend on ionic current direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baumann G, Mueller P (1974) A molecular model of membrane excitability. J Supramolec Struct 2: 538–557

    Google Scholar 

  • Boheim G (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membrane Biol 19: 277–303

    Google Scholar 

  • Boheim G, Hanke W, Eibl H (1980) Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport. Proc Natl Acad Sci USA 77: 3403–3407

    Google Scholar 

  • Boheim G, Janko K, Leibfritz D, Ooka T, König WA, Jung G (1976) Structural and membrane modifying properties of suzukacillin, a peptide antibiotic related to alamethicin. Biochim Biophys Acta 433: 182–199

    Google Scholar 

  • Boheim G, Kolb HA (1978) Analysis of the multi-pore system of alamethicin in a lipid membrane. I. Voltage-jump current-relaxation measurements. J Membrane Biol 38: 151–191

    Google Scholar 

  • Butters T, Hütter P, Jung G, Pauls N, Schmitt H, Sheldrick GM, Winter W (1981) On the structure of the helical N-terminus in alamethicin — α-helix of 310-helix? Angew Chem [Engl] 20: 889–890

    Google Scholar 

  • Cherry RJ, Chapman D, Graham DE (1972) Studies of the conductance changes induced in bimolecular lipid membranes by alamethicin. J Membrane Biol 7: 325–344

    Google Scholar 

  • Eisenberg M, Hall JE, Mead CA (1973) The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membrane Biol 14: 143–176

    Google Scholar 

  • Fringeli UP, Fringeli M (1979) Pore formation in lipid membranes by alamethicin. Proc Natl Acad Sci USA 76: 3852–3856

    Google Scholar 

  • Gordon LGM, Haydon DA (1972) The unit conductance channel of alamethicin. Biochim Biophys Acta 255: 1014–1018

    Google Scholar 

  • Gordon LGM, Haydon DA (1975) Potential-dependent conductances in lipid membranes containing alamethicin. Philos Trans R Soc Lond [Biol] 270: 433–447

    Google Scholar 

  • Hall JE (1975) Toward a molecular understanding of excitability. Biophys J 15: 934–939

    Google Scholar 

  • Hall JE (1981) Voltage-dependent lipid flip-flop induced by alamethicin. Biophys J 33: 373–381

    Google Scholar 

  • Hanke W, Boheim G (1980) The lowest conductance state of the alamethicin pore. Biochim Biophys Acta 596: 456–462

    Google Scholar 

  • Hanke W, Methfessel C, Wilmsen H-U, Katz E, Jung G, Boheim G (1983) Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta (in press)

  • Hol WGJ, Halie LM, Sander G (1981) Dipoles of the α-helix and Β-sheet: their role in protein folding. Nature 294: 532–536

    Google Scholar 

  • Irmscher G, Jung G (1977) Die hÄmolytischen Eigenschaften der membranmodifizierenden Peptidantibiotika Alamethicin, Suzukacillin und Trichotoxin. Eur J Biochem 80: 165–174

    Google Scholar 

  • Jung G, Brückner H, Oekonomopulos R, Boheim G, Breitmaier E, König WA (1979) Structural requirements for pore formation in alamethicin and analogs. In: Gross E, Meienhofer J (eds) Peptides, Proceedings of the VI. Amer Peptide Symposium. Pierce Chem Comp, Rockford, Ill, pp 647–654

    Google Scholar 

  • Jung G, Brückner H, Schmitt H (1981) Properties of the membrane modifying polypeptide antibiotics alamethicin and trichotoxin A-40. In: Voelter W, Weitzel G (eds) Structure and activity of natural peptides. de Gruyter, Berlin, pp 75–114

    Google Scholar 

  • Jung G, Dubischar N, Irmscher G, Mayr W, Oekonomopulos R (1977) Membranmodifizierende Peptidantibiotika aus StÄmmen des Fadenpilzes Trichoderma viride. Chem Ztg 101: 196–201

    Google Scholar 

  • Jung G, Dubischar N, Leibfritz D (1975) Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular dichroism study. Eur J Biochem 54: 395–409

    Google Scholar 

  • Kolb HA, Boheim G (1978) Analysis of the multi-pore system of alamethicin in a lipid membrane. II. Autocorrelation analysis and power spectral density. J Membrane Biol 38: 151–191

    Google Scholar 

  • Latorre R, Miller CG, Quay S (1981) Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers. Biophys J 36: 803–809

    Google Scholar 

  • Mayr W, Jung G (1980) Darstellung, Charakterisierung und Konformationsbestimmung eines Undekapeptidhydrazids der N-terminalen Alamethicin-Sequenz. Liebigs Ann Chem 1980: 1489–1506

    Google Scholar 

  • McIntosh TJ, Ting-Beall HP, Zampighi G (1982) Alamethicin-induced changes in lipid bilayer morphology. Biochim Biophys Acta 685: 51–60

    Google Scholar 

  • Mueller P, Rudin DO (1968) Action potentials induced in bimolecular lipid membranes. Nature 217: 713–719

    Google Scholar 

  • Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch-clamp: A method for resolving currents through individual open channels in biological membranes. Pfluegers Arch 375: 219–228

    Google Scholar 

  • Roy G (1975) Properties of the conductance induced in lecithin bilayer membranes by alamethicin. J Membrane Biol 24: 71–85

    Google Scholar 

  • Sakmann B, Boheim G (1979) Alamethicin-induced single channel conductance fluctuations in biological membranes. Nature 282: 336–339

    Google Scholar 

  • Schindler H (1979) Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. FEBS Lett 104: 157–160

    Google Scholar 

  • Schindler H, Feher G (1976) Branched bimolecular lipid membranes. Biophys J 16: 1109–1113

    Google Scholar 

  • Schwarz G, Savko P (1982) Structural and dipolar properties of the voltage dependent pore former alamethicin in octanol/dioxane. Biophys J 39: 211–219

    Google Scholar 

  • Yantorno RE, Takashima S, Mueller P (1982) Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers. Biophys J 38: 105–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boheim, G., Hanke, W. & Jung, G. Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles. Biophys. Struct. Mechanism 9, 181–191 (1983). https://doi.org/10.1007/BF00537815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537815

Key words

Navigation