Skip to main content
Log in

Effects of trichloroethylene, tetrachloroethylene and dichloromethane on enzymatic activities in soil

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Enzyme assays for β-glucosidase, β-acetylglucosaminidase, phosphatase, phosphodiesterase, and proteinase were made in soil samples incubated for two months after contamination with trichloroethylene, tetrachloroethylene, and dichloromethane. These volatile chlorinated hydrocarbons were added at doses of 10, 100, and 1000 μg per 100 g dry soil, respectively. Almost no effect was observed in soil sample contaminated with 10 μg of the chemicals when compared with control soil. When 100 μg of the volatile chlorinated hydrocarbons was added, the activity of β-glucosidase, β-acetylglucosaminidase and, in part, also of proteinase, was reduced during the first 28 days of incubation but returned to the same or slightly higher level than in the control soil after 2 months. Trichloroethylene, tetrachloroethylene, and dichloromethane at a concentration of 1000 μg per 100 g soil primarily inhibited activity of all enzymes under test. However, after two months, the enzymatic activities especially in soil samples contaminated with tetrachloroethylene and dichloromethane were found to be at the same or higher level than in the control soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brunner WB, Staub D, Leisinger T (1980) Bacterial degradation of dichloromethane. Appl Environ Microbiol 40:950–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filip Z, Kanazawa S (1984) Einfluß einiger halogenierter Kohlenwasserstoffe auf die Bodenbiomasse und auf einige Gruppen von Bodenmikroorganismen. In: Udluft P, Merkel B, Prösl K-H (eds) Recent investigation in the zone of aeration. Proc Int Symp Dept Hydrogeol Hydrochem Techn Univ Munich, pp 477–486

  • Friesel P, Milde G, Steiner B (1984) Interactions of halogenated hydrocarbons with soil. Fresenius Z Anal Chem: 160–164

    Article  CAS  Google Scholar 

  • Gäb S (1981) Zum Umweltverhalten der leichtflüchtigen Chlorkohlenwasserstoffe. In: Gefährdung von Grund-und Trinkwasser durch leichtflüchtige Chlorkohlenwasserstoffe; Aurand K, Fischer M (Hrsg) WaBoLu Berichte 3/1981, Dieter Reimer Verlag, Berlin, pp 55–61

    Google Scholar 

  • Halbartschlager H, Kohler H, Szwerinski H, Bardtke D (1984) Untersuchungen zum biologischen Abbau von Chlorkohlenwasserstoffen am Beispiel von Dichlormethan (Methylenchlorid). gwf-wasser/abwasser 125:380–386

    CAS  Google Scholar 

  • Harress HM, Holzwarth W (1983) Boden- und Grundwasser-verunreinigung mit chlorierten Kohlenwasserstoffen —Verursachersuche. gwf-wasser/abwasser 124:323–326

    CAS  Google Scholar 

  • Hayano K (1973) Method for the determination of β-glucosidase activity in soil. Soil Sci Plant Nut 19:103–108

    Article  CAS  Google Scholar 

  • Ishii T, Hayano K (1974) A method for the estimation of phosphodiesterase activity in soil. J Sci Soil Manure, Japan 45:505–508

    CAS  Google Scholar 

  • Kanazawa S (1979) Characteristic of soil organic matter and respiration in the subalpine coniferous forest of Mt. Shigayama (Part 6). Amino sugar contents and β-acetylglucosaminidase activity in soils. J Sci Soil Manure, Japan 43:297–303

    Google Scholar 

  • Kanazawa S, Filip Z (1986) Distribution of microorganisms, total biomass and enzyme activities in different particles of brown soil. Microb Ecol 12:205–215

    Article  CAS  Google Scholar 

  • Kanazawa S, Takai Y (1977) Characteristic of soil organic matter and respiration in subalpine coniferous forest of Mt. Shigayama (Part 5). β-Glucosidase and protease activities in soils. J Sci Soil Manure, Japan 48:534–539

    CAS  Google Scholar 

  • Kanazawa S, Takai Y (1978) A method for determination of β-acetylglucosaminidase activity in soil. J Sci Soil Manure, Japan 47:329–332

    Google Scholar 

  • Kiss S, Dragan-Bularda M, Radelescu D (1972) Biological significance of the enzymes accumulated in soil. Proc 3rd Symp Soil Biol Bucharest, Rumanian Nat Soc Soil Sci, pp 19–77

  • Kussmaul H, Mühlhausen D, Neumayr V (1981) Vorkommen von Trichlorethylen, Tetrachlorethylen und Tetrachlorethan in Trinkwässern des Rhein-Main-Gebietes. In: Aurand K, Fischer M (Hrsg) Gefährdung von Grund- und Trinkwasser durch leichtflüchtige Kohlenwasserstoffe, Dieter Reimer Verlag, Berlin, pp 41–45

    Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Malcolm RE, Vaughan D (1979) Humic substances and phosphatase activities in plant tissues. Soil Biol Biochem 11:253–259

    Article  CAS  Google Scholar 

  • Ministerium für Ernährung, Landwirtschaft, Umwelt und Forsten Baden-Württemberg Stuttgart (Hrsg) (1983) Leitfaden für die Beurteilung und Behandlung von Grundwasserverunreinigungen durch leichtflüchtige Chlorkohlenwasserstoffe. Wasserwirtschaftsverwaltung H. 13, 104 S

  • Neumayr V (1981) Verteilungs- und Transportmechanismen von chlorierten Kohlenwasserstoffen in der Umwelt. In: Aurand K, Fischer M (Hrsg) Gefährdung von Grund-und Trinkwasser durch leichtflüchtige Chlorkohlenwasserstoffe. WaBoLu Berichte 3/1981, Dieter Reimer Verlag, Berlin, pp 24–40

    Google Scholar 

  • Neumayr V (1984) Zum Problem lokaler und diffuser Grundwasserbeeinträchtigungen durch chlorierte Lösemittel aus Abwasserkanalsystemen. Korr Abwasser 31:493–498

    CAS  Google Scholar 

  • Piet GJ, Morra CHF, DeKruijf HAM (1981) The behaviour of organic micropollutants during passage through the soil. In: Quality of Groundwater, Proc Int Symp Noordnijkerhout, The Netherlands, Studies in Environ Sci 17:557–564

  • Rogers RD, MacFarlane JC (1981) Sorption of carbon tetrachloride, ethylene dibromide, and trichloroethylene on soil and clay. Environ Monit Assessm 1:155–162

    Article  CAS  Google Scholar 

  • Rysavy P (1983) Mineralization of cellobiose and activity of β-glucosidase (EC 3.2.1.21) in the soil heterocontinuous system. Folia Microbiol 28:112–117

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Perrott KW (1984) Assay of β-glucosidase in soils. Soil Sci 138:15–20

    Article  CAS  Google Scholar 

  • Stucki G, Gälli R, Ebersold H-R, Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM 2. Arch Microbiol 130:366–371

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Wilson JT, Enfield CG, Dunlap WJ, Cosby RL, Foster DA, Baskin LB (1981) Transport and fate of selected organic pollutants in a sandy soil. J Environ Qual 10:501–506

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanazawa, S., Filip, Z. Effects of trichloroethylene, tetrachloroethylene and dichloromethane on enzymatic activities in soil. Appl Microbiol Biotechnol 25, 76–81 (1986). https://doi.org/10.1007/BF00252516

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00252516

Keywords

Navigation