Skip to main content
Log in

Positron emission tomography shows high specific uptake of racemic carbon-11 labelled norepinephrine in the primate heart

  • Short Communications
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

(−)-Norepinephrine is the predominant neurotransmitter of the sympathetic innervation of the heart. Racemic norepinephrine was labelled with carbon-11 and injected i.v. into Cynomolgus monkeys. Five minutes after injection there was a more than tenfold higher radioactivity in the heart than in adjacent tissue. Pretreatment with the norepinephrine reuptake inhibitor desipramine reduced the uptake by more than 80%. The high specific uptake of racemic [11C]norepinephrine indicates that enatiomerically pure (−)-[11C]norepinephrine has promising potential for detailed mapping of the sympathetic innervation of the human myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Axelrod J. The fate of adrenaline and noradrenaline. In: Vane J, Wolstenholme G, O'Connor M, eds.Adrenergic mechanisms. Boston: Little, Brown & Co; 1960:28–39.

    Google Scholar 

  2. Goldstein D, Brush J, Eisenhofer G, Stull R, Esler M. In vivo measurement of neuronal uptake of norepinephrine in the human heart.Circulation 1988;78:41–48.

    Google Scholar 

  3. Melon P, Schwaiger M. Imaging of metabolism and autonomic innervation of the heart by positron emission tomography.Eur J Nucl Med 1992;19:453–464.

    Google Scholar 

  4. Fowler J, MacGregor R, Ansari A, Atkins H, Wolf A. A new rapid synthesis of carbon-11 labeled norepinephrine hydrochloride.J Med Chem 1974;17:246–248.

    Google Scholar 

  5. Schwaiger M, Hutchins G, Wieland D. PET measurements of presynaptic sympathetic nerve terminals in the heart. In: Kuhl D, ed.In vivo imaging of neurotransmitter functions in brain, heart and tumors. Washington: American College of Nuclear Physicians; 1991:329–347.

    Google Scholar 

  6. Iversen L, Jarrot B, Simmonds M. Differences in the uptake, storage and metabolism of (+)- and (−)-noradrenaline.Br J Pharmacol 1971;43:845–855.

    Google Scholar 

  7. Garg B, Krell R, Sokolski T, Patil P. Steric aspects of adrenergic drugs XXII: retention of (+)- and (−)-norepinephrine by mouse heart.J Pharm Sci 1973;62:1126–1129.

    Google Scholar 

  8. Ding Y, Fowler J, Dewey S, et al. Comparison of high specific activity (−) and (+)-6-[18F]fluoronorepinephrine and 6-[18F]fluorodopamine in baboons: heart uptake, metabolism and the effect of desipramine.J Nucl Med 1993;34:619–629.

    Google Scholar 

  9. Någren K, Schoeps K, Halldin C, Swahn C, Farde L. Selective synthesis of racemic 1-11C-labelled norepinephrine, octopamine and phenylethanolamine using [11C]nitromethane.Appl Radiat Isot 1994;45 (in press).

  10. Swahn C, Halldin C, Farde L. HPLC-method for determination of ligand metabolism during PET-studies.Ann Univ Turkuensis 1992;88:65–66.

    Google Scholar 

  11. Raismann R, Sette M, Pimoule C, Kanger S. High affinity3H-desipramine binding in the periphal and central nervous system: a specific site associated with the neuronal uptake of noradrenaline.Eur J Pharmacol 1982;78:345–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: L. Farde

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farde, L., Halldin, C., Någren, K. et al. Positron emission tomography shows high specific uptake of racemic carbon-11 labelled norepinephrine in the primate heart. Eur J Nucl Med 21, 345–347 (1994). https://doi.org/10.1007/BF00947971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00947971

Key words

Navigation