Skip to main content
Log in

Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [123I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis KL, Molts RC, Tinklenberg JR, Pfefferbaum A, Hollister LE, Koppel BS. Physostigmine: improvement of long-term memory processes in normal humans.Science 1978; 201: 272–274.

    PubMed  Google Scholar 

  2. Sitaram H, Weingartner JC, Gillin H. Human serial learning: enhancement with arecholine and choline and impairment with scopolamine.Science 1978; 201: 274–276.

    PubMed  Google Scholar 

  3. Bartus RL, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction.Science 1982; 217: 408–417.

    PubMed  Google Scholar 

  4. Aarsland D, Larsen P, Reinvang I, Aasland AM. Effects of cholinergic blockade on language in healthy young women: implications for the cholinergic hypothesis in dementia of the Alzheimer type.Brain 1994; 117: 1377–1384.

    PubMed  Google Scholar 

  5. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain.Science 1982; 215: 1237–1239.

    PubMed  Google Scholar 

  6. Holman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Reba RC. Muscarinic acetycholine receptors in Alzheimer's disease.JAMA 1985; 254: 3063–3066.

    PubMed  Google Scholar 

  7. Quirion R, Aubert P, Lapchak A, Schaum RP, Teolis S, Gauthier S, Araujo DM. Muscarinic receptor subtypes in neurodegenerative disorders: focus on Alzheimer's disease.Trends Pharmacol Sci 1989 Suppl: 80–84.

  8. Wurtmann RJ. The return of the cholinergic hypothesis.J Clin Invest 1994; 94: 470.

    PubMed  Google Scholar 

  9. MacNamara JO. Muscarinic cholinergic receptors participate in the kindling model of epilepsy.Brain Res 1978; 154: 415–420.

    PubMed  Google Scholar 

  10. Dasheiff RM, Savage DD, McNamara JO. Seizures down-regulate muscarinic cholinergic receptors in hippocampal formation.Brain Res 1981; 235: 327–334.

    Google Scholar 

  11. Liles WC, Taylor S, Finnel R, Lai H, Nathanson NM. Decreased muscarinic acetylcholine receptor number in the central nervous system of the tottering mouse.J Neurochemistry 1986; 46: 977–982.

    Google Scholar 

  12. Cruikshank JW, Brudzynski SM, McLachlan RS. Involvement of Ml muscarinic receptors in the initiation of cholinergically induced epileptic seizures in rat brain.Brain Res 1994; 643: 125–129.

    PubMed  Google Scholar 

  13. Danober L, Vergnes M, Depaulis A, Marescaux C. Nucleus basalis lesions suppress spike and wave discharges in rats with spontaneous absence-epilepsy.Neuroscience 1994; 59: 531–539.

    PubMed  Google Scholar 

  14. Müller-Gärtner HW. Mayberg HS, Fisher RS, Lesser R, Wilson AA, Ravert HT, Dannals RF, Wagner HN, Ümatsu S, Frost JJ. Decreased hippocampal muscarinic cholinergic receptor binding measured by123I-iododexetimide and single photon emission computer tomography in epilepsy.Ann Neurol 1993; 34: 235–238.

    PubMed  Google Scholar 

  15. Boundy KL, Rowe CC, Black AB, Kitchener MI, Barnden LR, Sebben R, Kneebone MA, Kassiou M, Katsifis A, Lambrecht R. Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomography.Neurology 1996; 47: 1015–1020.

    PubMed  Google Scholar 

  16. Wilson AA, Dannals RF, Ravert HT, Frost JJ, Wagner HN Jr. Synthesis and biological evaluation of [125I]- and [123I]4-iododexetimide, a potent muscarinic cholinergic receptor antagonist.J Med Chem 1989; 32: 1057–1062.

    PubMed  Google Scholar 

  17. Müller-Gärtner HW, Wilson AA, Dannals RF, Wagner HN, Frost JJ. Imaging muscarinic cholinergic receptors in human brain in vivo with SPECT [123I]4-iododexetimide and [123I]4-iodolevetimide.J Cereb Blood Flow Metab 1992; 12: 562–570.

    PubMed  Google Scholar 

  18. Glover G, Pelc N. The nonlinear partial volume artefact.J Comput Assist Tomogr 1979; 3: 573–574.

    Google Scholar 

  19. Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H. Effect of spatial resolution on SPECT quantification values.J Nucl Med 1989; 30: 508–514.

    PubMed  Google Scholar 

  20. Jack CR, Sharbrough FW, Twomey CK, Zinsmeister AR. Temporal lobe seizures: lateralisation with MR volume measurements of hippocampal formation.Radiology 1990; 175: 423–429.

    PubMed  Google Scholar 

  21. Jack CR, Sharbrough FW, Cascino GD, Hirschom KA, O'Brian PC, Marsh WR. Magnetic resonance image-based hippocampal volumetry: correlation with outcome after temporal lobectomy. Ann Neurol 1992; 31: 138–146.

    PubMed  Google Scholar 

  22. vanPaesschen W, Sisodiya S, Connelly A, Duncan JS, Free SL, Raymond AA, Grunewald RA, Revesz T. Quantitative hippocampal MRI and intractable temporal-lobe epilepsy.Neurology 1995; 45: 2233–2240.

    PubMed  Google Scholar 

  23. Savic I, Roland P, Sedvall G, Persson A, Pauli S, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci.Lancet 1988; 11: 863–866.

    Google Scholar 

  24. van Huffelen AC, van Isselt JW, van Veelen CWM, van Rijk PP, van Bentum AME, Dive D, Maquet P, Franck G, Velis DN, van Emde Boas W, Debets RMC. Identification of the side of the epileptic focus with123I-Iomazenil SPECT.Acta Neurochir Suppl. (Wien) 1990; 50: 95–99.

    Google Scholar 

  25. Burdette DE, Sakurai SY, Henry TR, Ross DA, Pennell PB, Frey KA, Sackellares JC, Albin RL. Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy.Neurology 1995; 45: 934–941.

    PubMed  Google Scholar 

  26. Behrens E, Zentner J, van Roost D, Hufnagel A, Elger CE, Schramm J. Subdural and depth electrodes in the presurgical evaluation of epilepsy.Acta Neurochir (Wien) 1994; 128: 84–87.

    Google Scholar 

  27. Hufnagel A, Burr W, Elger CE, Nadstawek J, Hefner G. Localisation of the epileptogenic focus during methohexital induced anaesthesia.Epilepsia 1992; 33: 271–284.

    PubMed  Google Scholar 

  28. Hufnagel A, Elger CE, Pels H, Zentner J, Wolf H, Schramm J, Wiestler OD. Prognostic significance of ictal and interictal epileptiform activity in temporal lobe epilepsy.Epilepsia 1995; 35: 1146–1153.

    Google Scholar 

  29. Hufnagel A, Poersch M, Elger CE, Zentner J, Wolf H, Schramm J. The clinical and prognostic relevance of the postictal slow focus in the electrocorticogram.Electroencephalogr Clin Neurophysiol 1995; 94: 12–18.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckesser, M., Hufnagel, A., Ziemons, K. et al. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy. Eur J Nucl Med 24, 1156–1161 (1997). https://doi.org/10.1007/BF01254249

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254249

Key words

Navigation