Skip to main content
Log in

Stationary gene frequency distribution in the environment fluctuating between two distinct states

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A general method is given to obtain a stationary distribution in a “stochastic” one-dimensional dynamical system in which an environmental parameter specifying the dynamical system is a stationary Markov process with only two states. By applying this method, the exact stationary gene frequency distribution is obtained for a genic selection model in the environment fluctuating between two distinct states. Several limiting stationary distributions are obtained therefrom, and one of them is shown to coincide with a stationary solution of the diffusion equation heuristically derived by us for more general cases. Discussion is given on the relationship between the diffusion equations obtained by various authors starting from discrete, non-overlapping generation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L., Horsthemke, W., Lefever, R.: White and coloured external noise and transition phenomena in nonlinear systems. Z. Physik B 29, 367–373 (1978)

    Google Scholar 

  • Avery, P. J.: The effect of random selection coefficients on populations of finite size — some particular models. Genet. Res. 29, 97–112 (1977)

    Google Scholar 

  • Ayala, F. J., ed.: Molecular evolution. Sunderland, Massachusetts: Sinauer Associates, Inc. 1976

    Google Scholar 

  • Capocelli, R. M., Ricciardi, L. M.: A diffusion model for population growth in a random environment. Theor. Pop. Biol. 5, 28–41 (1974)

    Google Scholar 

  • Cook, R. D., Hartl, D. L.: Uncorrelated random environments and their effects on gene frequency. Evolution 28, 265–274 (1974)

    Google Scholar 

  • Felsenstein, J.: The theoretical population genetics of variable selection and migration. Ann. Rev. Genet. 10, 253–280 (1976)

    Google Scholar 

  • Gikhman, I. I.: Convergence to Markov processes. Ukrainian Math. J. 21, 263–270 (1969)

    Google Scholar 

  • Gillespie, J. H.: The effects of stochastic environments on allele frequencies in natural populations. Theor. Pop. Biol. 3, 241–248 (1972)

    Google Scholar 

  • Gillespie, J. H.: Natural selection with varying selection coefficients — a haploid model. Genet. Res. 21, 115–120 (1973a)

    Google Scholar 

  • Gillespie, J. H.: Polymorphism in random environments. Theor. Pop. Biol. 4, 193–195 (1973b)

    Google Scholar 

  • Gillespie, J. H., Guess, H. A.: The effects of environmental autocorrelation in a random environment. Amer. Nat. 112, 897–909 (1978)

    Google Scholar 

  • Haken, H.: Synergetics, second enlarged edition. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  • Harris, H.: Enzyme polymorphism in man. Proc. Roy. Soc. B 164, 298–310 (1966)

    Google Scholar 

  • Hartl, D. L., Cook, R. D.: Autocorrelated random environments and their effects on gene frequency. Evolution 28, 275–280 (1974)

    Google Scholar 

  • Hartl, D. L., Cook, R. D.: Stochastic selection and the maintenance of genetic variation. In: Population genetics and ecology (S. Karlin, E. Nevo, eds.), pp. 593–611. New York-San Francisco-London: Academic Press 1976

    Google Scholar 

  • Hubby, J. L., Lewontin, R. C.: A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54, 577–594 (1966)

    Google Scholar 

  • Jensen, L.: Random selective advantages of genes and their probabilities of fixation. Genet. Res. 21, 215–219 (1973)

    Google Scholar 

  • Karlin, S., Levikson, B.: Temporal fluctuations in selection intensities: Case of small population size. Theor. Pop. Biol. 6, 383–412 (1974)

    Google Scholar 

  • Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: Case of large population size. Theor. Pop. Biol. 6, 355–382 (1974)

    Google Scholar 

  • Karlin, S., Lieberman, U.: Random temporal variation in selection intensities: One-locus two allele model. J. Math. Biol. 2, 1–17 (1975)

    Google Scholar 

  • Kimura, M.: Processes leading to quasi-fixation of genes in natural populations with random fluctuations in selection intensities. Genetics 39, 280–295 (1954)

    Google Scholar 

  • Kimura, M., Ohta, T.: Protein polymorphism as a phase of molecular evolution. Nature 229, 467–469 (1971a)

    Google Scholar 

  • Kimura, M., Ohta, T.: Theoretical aspects of population genetics. Princeton, New Jersey: Princeton University Press 1971b

    Google Scholar 

  • Kimura, M., Ohta, T.: On some principles governing molecular evolution. Proc. Nat. Acad. Sci. USA 71, 2848–2852 (1974)

    Google Scholar 

  • Kitahara, K., Horsthemke, W., Lefever, R.: Coloured noise induced transitions: Exact results for external dichotomous Markovian noise. Phys. Lett. 70A, 377–380 (1979)

    Google Scholar 

  • Kubo, R.: Stochastic Liouville equations. J. Math. Phys. 4, 174–183 (1963)

    Google Scholar 

  • Kurtz, T. G.: Semigroups of conditioned shifts and approximation of Markov processes. Annals of Probability 3, 618–642 (1975)

    Google Scholar 

  • Lax, M.: Classical noise IV: Langevin methods. Rev. Mod. Phys. 38, 541–566 (1966)

    Google Scholar 

  • LeCam, L. M., Neyman, J., Scott, E. L., eds.: Darwinian, neo-Darwinian, and non-Darwinian evolution. In: Proc. sixth Berkeley symp. on math. statistics and probability, Vol. 5. Berkeley: University of California Press 1972

  • Lewontin, R. C.: The genetic basis of evolutionary change. New York-London: Columbia University Press 1974

    Google Scholar 

  • Lewontin, R. C., Hubby, J. L.: A molecular approach to the study of genic heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966)

    Google Scholar 

  • Malliavin, H.: Stochastic calculus of variation and hypoelliptic operators. Proc. of Intern. Symp. SDE Kyoto 1976, pp. 195–263.

  • Matsuda, H., Gojobori, T.: Protein polymorphism and fluctuation of environments. Adv. Biophys. 12, 53–99 (1979)

    Google Scholar 

  • Matsuda, H., Gojobori, T., Takahata, N.: Theoretical study on protein polymorphism and its bearing on the evolution of protein molecules. In: Evolution of protein molecules (H. Matsubara, T. Yamanaka, eds.), pp. 89–100. Tokyo: Japan Scientific Societies Press 1978

    Google Scholar 

  • Maruyama, T., Kimura, M.: Theoretical study of genetic variability, assuming stepwise production of neutral and very slightly deleterious mutations. Proc. Nat. Acad. Sci. USA 75, 919–922 (1978)

    Google Scholar 

  • Narain, P., Pollak, E.: On the fixation probability of a gene under random fluctuations in selection intensities in small populations. Genet. Res. 29, 113–121 (1977)

    Google Scholar 

  • Nei, M.: Molecular population genetics and evolution. Amsterdam-Oxford: North Holland Publishing Company 1975

    Google Scholar 

  • Nei, M.: Comments to stochastic selection and the maintenance of genetic variation by Hartl, D. L. and Cook, R. D. In: Population genetics and ecology (S. Karlin, E. Nevo, eds.), pp. 612–615. New York-San Francisco-London: Academic Press 1976

    Google Scholar 

  • Nei, M., Yokoyama, S.: Effects of random fluctuation of selection intensity on genetic variability in a finite population. Japan. J. Genet. 51, 355–369 (1976)

    Google Scholar 

  • Nelson, E.: The adjoint Markov process. Duke Math. J. 25, 671–690 (1958)

    Google Scholar 

  • Nevo, E.: Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol. 13, 121–177 (1978)

    Google Scholar 

  • Norman, M. F.: An ergodic theorem for evolution in a random environment. J. Appl. Prob. 12, 661–672 (1975)

    Google Scholar 

  • Notohara, M., Ishii, K., Matsuda, H.: Use of orthogonal transformation in population genetics theory. J. Math. Biol. 6, 249–263 (1978)

    Google Scholar 

  • Ohta, T.: Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Pop. Biol. 10, 254–275 (1976)

    Google Scholar 

  • Papanicolaou, G. C., Varadhan, S. R. S.: A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations. Comm. Pure and Appl. Math. 26, 497–524 (1973)

    Google Scholar 

  • Papanicolaou, G. C.: Asymptotic analysis of transport processes. Bull. Amer. Math. Soc. 81, 330–392 (1975)

    Google Scholar 

  • Powell, J. R.: Protein variation in natural populations of animals. In: Evolutionary biology, Vol. 8, pp. 79–119. New York: Plenum Press 1975

    Google Scholar 

  • Sawyer, S. A., Slatkin, M.: Density independent fluctuations of population size. Theor. Pop. Biol., in press (1980)

  • Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)

    Google Scholar 

  • Takahata, N., Ishii, K., Matsuda, H.: Effect of temporal fluctuation of selection coefficient on gene frequency in a population. Proc. Nat. Acad. Sci. USA 72, 4541–4545 (1975)

    Google Scholar 

  • Tuckwell, H. C.: The effects of random selection on gene frequency. Math. Biosciences 30, 113–128 (1976)

    Google Scholar 

  • Wright, S.: Evolution and the genetics of populations. Chapt. 13. Chicago: The University of Chicago Press 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, H., Ishii, K. Stationary gene frequency distribution in the environment fluctuating between two distinct states. J. Math. Biology 11, 119–141 (1981). https://doi.org/10.1007/BF00275437

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275437

Key words

Navigation