Skip to main content
Log in

Photosynthetically active suspension cultures of potato spindle tuber viroid infected tomato cells as tools for studying viroid — host cell interaction

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Photosynthetically active callus and cell suspension cultures were established from uninfected Lycopersicon peruvianum plants and from uninfected and potato spindle tuber viroid (PSTVd) infected plants of Lycopersicon esculentum cv. Rutgers. Viroid infection was maintained in photoheterotrophic culture on media containing 3% sucrose, but during continuous photo-mixotrophic culture in low sucrose media (1% sucrose), the level of PSTVd accumulation decreased. Photoautotrophic cell suspensions could be established with uninfected, but not with viroid infected tomato cells. As compared to uninfected cells, PSTVd infected cells grew slowly, were morphologically different in size and shape, and formed tight cell aggregates. Electronmicroscopy showed that starch accumulation in chloroplasts, deformation of the chloroplast envelope and irregular plasmalemmasomes at the cell membrane were associated with PSTVd infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-benzylaminopurine

CEVd:

citrus exocortis viroid

CSVd:

chrysanthemum stunt viroid

PSTVd:

potato spindle tuber viroid

TMV:

tobacco mosaic virus

phc:

photoheterotrophic cell culture

mcc:

photomixotrophic cell culture

pcc:

photoautotrophic cell culture

References

  • Beimen A, Witte L, Barz W (1992) Bot Acta 105: 152–160

    Google Scholar 

  • Berlin J, Wray V, Forche E, Reng HG, Schüler H, Luckinger R, Mühlbach HP (1985) J Exp Bot 36: 1985–1995

    Google Scholar 

  • Caroll TW, Kosugue T (1969) Phytopathology 59: 953–962

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K, (1968) Exp Cell Res 50: 150–158

    Google Scholar 

  • Hari V (1980) Phytopathology 70: 385–387

    Google Scholar 

  • Hüsemann W (1981) Protoplasma 109: 415–431

    Google Scholar 

  • Hüsemann W, Barz W (1977) Physiol Plant 40: 77–81

    Google Scholar 

  • Israel HW, Ross AF (1967) Virology 33: 272–286

    Google Scholar 

  • Kafatos FC, Jones CW, Efstratiadis A (1979) Nucl Acids Res 7: 1541–1552

    Google Scholar 

  • Laetsch WM, Stetler DA (1965) Am J Bot 52: 798–804

    Google Scholar 

  • Lawson RH, Hearon SS (1971) Phytopathology 61: 653–656

    Google Scholar 

  • Marton L, Duran-Vila N, Lin JJ, Semancik JS (1982) Virology 122: 219–238

    Google Scholar 

  • Mühlbach HP (1980) Planta 148: 89–96

    Google Scholar 

  • Mühlbach HP (1982) Curr Top Microbiol Immunol 99: 82–129

    Google Scholar 

  • Mühlbach HP, Sänger HL (1977) J gen Virol 35: 377–386

    Google Scholar 

  • Mühlbach HP, Sänger HL (1981) Bioscience Reports 1: 79–87

    Google Scholar 

  • Mühlbach HP, Barth A, Tank C (1992) Mol Biol (Life Sci Adv) 11: 79–90

    Google Scholar 

  • Mühlbach HP, Faustmann O, Sänger HL (1983) Plant Mol Biol 2: 239–247

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497

    CAS  Google Scholar 

  • Nover L, Kranz E, Scharf KD (1982) Biochem Physiol Pflanzen 177: 483–499

    Google Scholar 

  • Rosenberg F, Wahn K, Sänger HL (1985) Phytopath Z 114: 41–68

    Google Scholar 

  • Schindler IM, Mühlbach HP (1992) Plant Science 84: 221–229

    Google Scholar 

  • Spurr AR (1969) J Ultrastructural Research 26: 31–43

    Google Scholar 

  • Tewes A, Glund K, Walther R, Reinbothe H (1984) Z Pflanzenphysiol 113: 141–150

    Google Scholar 

  • Wahn K, Rosenberg F, Sänger HL (1980) Phytopath Z 98: 1–18

    Google Scholar 

  • Wang MC, Lin JJ, Duran-Vila N, Semancik JS (1986) Physiol Mol Plant Pathol 28: 107–124

    Google Scholar 

  • Zelcer A, van Adelsberg J, Leonard DA, Zaitlin M (1981) Virology 109: 314–322

    Google Scholar 

  • Ziegler R, Egle K (1965) Beitr Biol Pflanzen 41: 11–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöcker, S., Guitton, MC., Barth, A. et al. Photosynthetically active suspension cultures of potato spindle tuber viroid infected tomato cells as tools for studying viroid — host cell interaction. Plant Cell Reports 12, 597–602 (1993). https://doi.org/10.1007/BF00232806

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232806

Key words

Navigation