Skip to main content
Log in

The effects of mannitol and furosemide on brain water changes in normal and MCA-occluded rats: a magnetic resonance study

  • Original Articles
  • Neuroradiology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Mannitol and furosemide treatment of ischaemic brain oedema caused by middle cerebral artery occlusion (MCAO) was studied by MRI in 87 rats. MRI was performed in all rats before and 30–360 min after drug infusion. The examinations were performed in the presence of an intact blood-brain barrier (BBB) 6 h after MCAO, and 3 days after MCAO at the time of maximal disruption of the BBB. Spin echo (SE) sequences were used for imaging and for determination of the relaxation times T1 and T2. Subtraction images were constructed. Furosemide dehydrated healthy and ischaemic brain. Mannitol had no dehydrating effect on healthy brain tissue. However, when the BBB was disrupted in severe oedema mannitol produced a decrease in water content, a shortening of T1 and T2, and a decrease in intracranial pressure (ICP), while in less severe oedema mannitol could increase brain water content, thus aggravating ICP. The subtraction technique allowed visualisation of the transient change in bulk in water animals with disruption of the BBB after mannitol treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wise BL, Chater N (1962) The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebrospinal fluid pressure. J Neurosurg 19: 1038–1043

    Google Scholar 

  2. Schenkin HA, Goluboff B, Haft H (1962) The use of mannitol for the reduction of intracranial pressure in intracranial surgery. J Neurosurg 19: 897–900

    Google Scholar 

  3. Albright AL, Latchaw RE, Robinson AG (1984) Intracranial and systemic effects of osmotic oncotic therapy in experimental cerebral edema. J Neurosurg 60: 481–498

    Google Scholar 

  4. Albright AL, Latchaw RE (1985) Effects of osmotic and oncodiuretic therapy on CT-brain density and intracranial pressure. Acta Neurochir 78: 119–122

    Google Scholar 

  5. Muizelaar JP, Wei EP, Kontos HA, Becker DP (1983) Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg 59: 822–828

    Google Scholar 

  6. Bounds JV, Wiebers DP, Whisnant JP, Okazaki H (1981) Mechanism and timing of deaths from cerebral infarction. Stroke 12: 474–477

    Google Scholar 

  7. Ropper AH, Shafran B (1984) Brain edema after stroke: clinical syndrome and intracranial pressure. Arch Neurol 41: 26–29

    Google Scholar 

  8. Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13: 2–20

    Google Scholar 

  9. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischemia in the rat. I. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cerebral Blood Flow Metab 1: 153–160

    Google Scholar 

  10. Persson L, Hårdemark H-G, Bolander H, Hillered L, Olsson Y (1989) Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 205: 641–645

    Google Scholar 

  11. Kotwica Z, Thuomas K-Å, Persson L (1989) Magnetic resonance studies on the development of ischemic edema in an early period after occlusion of middle cerebral artery in a rat. Radiol Diagn 30: 307–311

    Google Scholar 

  12. Thuomas K-Å, Kotwica Z, Bergström K, Bolander H, Hillered L, Olsson Y, Ponte'n U, Persson L (1991) MRI of cerebral ischemia in rats with occlusion of the middle cerebral artery. Eur Radiol 1: 118–123

    Google Scholar 

  13. Kotwica Z, Thuomas K-Å, Persson L (1989) The effect of brain edema on intracranial pressure in focal cerebral ischemia: an experimental study in a rat using magnetic resonance imaging. Zentralbl Neurochir 50: 68–71

    Google Scholar 

  14. Kotwica Z, Hårdemark H-G, Persson L (1991) Intracranial pressure following middle cerebral occlusion in rat. Res Exp Med 191: 99–104

    Google Scholar 

  15. Kato H, Kogure K, Ohtomo H, Tobita M, Matsui S, Yamamato E, Kohno H (1985) Correlation between proton magnetic resonance imaging and retrospective histochemical images in experimental cerebral infarction. J Cerebral Blood Flow Metab 5: 267–274

    Google Scholar 

  16. Barnes D, du Boulay EGPH, McDonald WI, Johnson G, Tofs PS (1986) The NMR signal decay characteristics of a cerebral oedema. Acta Radiol [Suppl] 369: 503–506

    Google Scholar 

  17. Bederson JB, Bartkowski HM, Moon K, Halks-Miller M, Nishimura MC, Brant-Zawadski M, Pitts LH (1986) Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model. J Neurosurg 64: 795–802

    Google Scholar 

  18. Bergström K, Thuomas K-Å, Ponte'n U, Nilsson P, Zwetnow NN, Vlajkovic S (1986) Magnetic resonance imaging of brain tissue displacement and brain tissue water contents during progressive brain compression. Acta Radiol [Suppl] 368: 350–352

    Google Scholar 

  19. Ponte'n U, Thuomas K-Å, Bergström K, Nilsson P, Zwetnow NN, Vlajkovic K-E, Löfgren J (1986) Evaluation of intracranial pressure rebound after evacuation of intracranial expanding lesions. Acta Radiol [Suppl] 369: 353–355

    Google Scholar 

  20. Vlajkovic S, Zwetnow NN, Thuomas K-Å, Bergström K, Ponte'n U, Nilsson P (1986) Magnetic resonance imaging of water intoxication. Acta Radiol [Suppl] 369: 353–355

    Google Scholar 

  21. Zwetnow NN, Vlajkovic S, Thuomas K-Å, Bergström K, Ponte'n U, Nilsson P (1986) Magnetic resonance imaging of cerebral compression and local brain tissue water content during continuous extradural bleeding. Acta Radiol [Suppl] 369: 356–359

    Google Scholar 

  22. Haida M, Yamamoto M, Matsumura H, Shinohara Y, Fukuzaki M (1987) Intracellular and extracellular spaces of normal adult rat brain determined from proton nuclear magnetic resonance relaxation times. J Cerebral Blood Flow Metab 7: 552–556

    Google Scholar 

  23. Brant-Zawadski M, Weinstein P, Bartkowski H, Moseley M (1987) MR imaging and spectroscopy in clinical and experimental cerebral ischemia: a review. AJR 148: 579–588

    Google Scholar 

  24. Unger EC, Gado MH, Fulling KF, Littlefield JL (1987) Acute cerebral infarction in monkeys: an experimental study using MR imaging. Radiology 162: 789–795

    Google Scholar 

  25. Young W, Rappaport H, Chalif D, Flamm E (1987) Regional brain sodium, potassium and water changes in the rat middle cervical artery occlusion model of ischemia. Stroke 18: 751–759

    Google Scholar 

  26. Bose B, Jones SC, Lorig R, Friel HT, Weinstein M, Little JR (1988) Evolving focal cerebral ischemia in cats: spatial correlation of nuclear magnetic resonance imaging, cerebral blood flow and histopathology. Stroke 19: 28–37

    Google Scholar 

  27. Jakobsson K-E, Thuomas K-Å, Bergström K, Ponte'n U, Zwetnow NN (1990) Rebound of ICP after brain compression. An MRI study in dogs. Acta Neurochir (Wien) 104: 126–135

    Google Scholar 

  28. Knight RA, Ordidge RJ, Helpern JA, Chopp M, Rodolosi LC, Peck D (1991) Temporal evaluation of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22: 802–808

    Google Scholar 

  29. Naeser P, Thuomas K-Å, Roberto A, Larsson BS (1992) Concomitant changes in MR image and morphology induced by glucose fructose in B16 mouse melanomas. Acta Radiol 33: 266–270

    Google Scholar 

  30. Thuomas K-Å, Vlajkovic S, Ganz JC, Nilsson P, Bergström K, Ponte'n U, Zwetnow NN (1993) Progressive brain compression. Changes in vital physiological variables, correlated with brain water content and brain tissue displacement: experimental MR imaging in dogs. Acta Radiol 34: 289–295

    Google Scholar 

  31. Ganz JC, Thuomas K-Å, Vlajkovic S, Nilsson P, Bergström K, Ponte'n U, Zwetnow NN (1993) Changes in intracranial morphology, regional cerebral water content and vital physiological variables during epidural bleeding: an experimental MR study in dogs. Acta Radiol 34: 279–288

    Google Scholar 

  32. Pollay M, Fullenwinder CH, Roberts PA, Stevens FA (1983) Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg 59: 945–950

    Google Scholar 

  33. Meyer FB, Anderson RE, Sundt TM, Yaksh TL (1987) Treatment of experimental focal cerebral ischemia with mannitol: assessment by intracellular brain pH cortical blood flow, and electroencephalography. J Neurosurg 66: 109–115

    Google Scholar 

  34. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurological examination. Stroke 17: 472–476

    Google Scholar 

  35. Crawley AP, Henkelman (1987) Errors in T2 estimations using multislice echo imaging. Magn Reson Med 4: 34–47

    Google Scholar 

  36. Farran TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods: Academic Press, New York

    Google Scholar 

  37. Thuomas K-Å (1991) Aspects of image intensity and relaxation time assessment in magnetic resonance imaging: an experimental and clinical study. (Thesis, Uppsala University, 1987). Acta Radiol [Suppl] 375: 49–90

    Google Scholar 

  38. Just M, Higer HP, Pfannenstiel P (1988) Errors in T1 determinations using multislice techniques and gaussian slice profile. Magn Reson Imaging 6: 53–56

    Google Scholar 

  39. Thuomas K-Å, Bergström K, Ericsson A, Hemmingsson A, Jung B, Sperber G (1986) Subtraction in magnetic resonance imaging. Acta Radiol [Suppl] 369: 483–485

    Google Scholar 

  40. Tovi M, Thuomas K-Å, Lilja A, Bergström M, Lundquist H, Långström B (1986) Tumour delineation with magnetic resonance imaging in gliomas. Acta Radiol [Suppl] 369: 161–163

    Google Scholar 

  41. McGraw CP, Eben A Jr, Howard G (1978) Effect of dose and dose schedule on the response of intracranial pressure to mannitol. Surg Neurol 10: 127–130

    Google Scholar 

  42. Levy RM, Berry I, Moseley ME, Weinstein PR (1986) Combined magnetic resonance imaging and bihemispheric magnetic resonance spectroscopy in acute experimental focal cerebral ischemia. Acta Radiol [Suppl] 369: 507–511

    Google Scholar 

  43. O'Brien MD (1979) Ischemic cerebral edema: a review. Stroke 10: 623–628

    Google Scholar 

  44. Roberts PA, Pollay M, Engles CH, Pendelton B, Reynolds E, Stevens FA (1987) Effect of intracranial pressure of furosemide combined with varying doses and administration rates of mannitol. J Neurosurg 66: 440–446

    Google Scholar 

  45. Javid M, Gilboe D, Cesario T (1964) The rebound phenomenon and hypertonic solutions. J Neurosurg 21: 1059–1066

    Google Scholar 

  46. Black SE, Helpern JA, Kertesz A, Smith MB, Chopp M, Welch KMA (1987) Nuclear magnetic resonance imaging and spectroscopy in stroke. In Moore WS (ed) Surgery and cardiovascular disease. Churchill-Livingstone, New York, pp 217–253

    Google Scholar 

  47. Mano J, Levy RH, Crooks LE, Hosobuichi Y (1983) Proton nuclear magnetic resonance imaging of acute experimental cerebral ischemia. Invest Radiol 17: 345–351

    Google Scholar 

  48. Horikowa Y, Naruse S, Tanaka G, Hirikawa H, Nishkawa H (1986) Proton NMR relaxation times in ischemic brain edema. Stroke 17: 1149–1152

    Google Scholar 

  49. Kuntz JD, Kauzmann W (1974) Hydration of proteins and polypeptides. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 28. Academic Press, New York, pp 297, 314–315

    Google Scholar 

  50. Lynch LJ (1983) Water relaxation in heterogenous and biological systems. In: Cohen JS (ed) Magnetic resonance in biology, vol 2. Wiley, New York, pp 280–286

    Google Scholar 

  51. Naruse S, Horikawa Y, Tanaka Y, Hirikawa H, Yoshizaki K (1982) Proton nuclear magnetic resonance studies on brain edema. J Neurosurg 56: 747–752

    Google Scholar 

  52. Bell BA, Kean DM, MacDonald HL, Barnett GH, Douglas RHB, Smith MA, McGhee CNJ, Miller JD, Tocher JL, Best JJK (1987) Brain water measurement by magnetic resonance imaging: correlation with direct estimation and changes after mannitol and dexamethasone. Lancet II: 66–69

    Google Scholar 

  53. Bell BA, MacDonald HL, Kean DM, Smith MA, Barnett GH, Miller JD, Best JJK (1986) Effects of dexamethasone and mannitol on cerebral oedema quantified by magnetic resonance imaging. J Neurol Neurosurg Psychiatry 49: 467–468

    Google Scholar 

  54. Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NB, Aubrey E (eds) Edema. Raven Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: K.-Å. Thuomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuomas, K.Å., Kotwica, Z. & Persson, L. The effects of mannitol and furosemide on brain water changes in normal and MCA-occluded rats: a magnetic resonance study. Eur. Radiol. 4, 125–132 (1994). https://doi.org/10.1007/BF00231198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231198

Key words

Navigation