Skip to main content
Log in

On the possibility of wake-field effects in the conductivity of doped semiconductors

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation of a wake field around a swift ion passing through an electron gas and the resulting contribution to the stopping power acting on the ion is an intensively studied phenomenon in metals and semiconductors. The present investigation serves to clarify whether an analogous effect, namely the formation of wake fields and a corresponding contribution to the resistivity, might occur in the Galilei-transformed case of electronic transport in doped semiconductors where the gas of drifting charge carriers passes through an array of fixed impurity ions. By use of an appropriate dynamical screening theory we show that indeed a local plateau in the current density versus field characteristic has to be expected whenever the mean drift energy per carrier exceeds the sum of the mean thermal carrier energy and the zero-point energy of the longitudinal plasma mode of the carrier gas. However, our survey of the published literature suggests that this condition might be too stringent, at least for bulk materials and standard experimental situations, where the strong carrier heating in the high-field regime of relevance in combination with other drift-limiting mechanisms or interband electron-hole avalanching would always precede and prevent the formation of the wake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Ritchie, W. Brandt, P.M. Echenique: Phys. Rev. B 14, 4808 (1976)

    Google Scholar 

  2. M.R. Echenique, R.H. Ritchie, W. Brandt: Phys. Rev. B 20, 2567 (1979)

    Google Scholar 

  3. A. Mazarro, P.M. Echenique, R.H. Ritchie: Phys. Rev. B 27, 4117 (1983)

    Google Scholar 

  4. M.G. Calkin, P.J. Nicholson: Rev. Mod. Phys. 19, 361 (1967)

    Google Scholar 

  5. E. Gerlach: Phys. Stat. Sol. (b) 61, K 97 (1974)

    Google Scholar 

  6. E. Gerlach, P. Grosse: Festkörperprobleme (Advances in Solid State Physics) 17, 157 (1977)

    Google Scholar 

  7. For a recent critical discussion of the energy-loss method see also: J. L. Farvaque: Phys. Rev. B 39, 1682 (1989)

    Google Scholar 

  8. F. Guinea, F. Fores, P.M. Echenique: Phys. Rev. B25, 6109 (1982)

    Google Scholar 

  9. P.M. Echenique, R.M. Nieminen, J.C. Ashley, R.H. Ritchie: Phys. Rev. B33, 897 (1986)

    Google Scholar 

  10. G. Berthold, P. Kocevar: J. Phys. C: Solid State Phys. 17, 4981 (1984)

    Google Scholar 

  11. D. Lowe, J.R. Barker: J. Phys. C: Solid State Phys. 18, 2507 (1985)

    Google Scholar 

  12. D. Sirko, D.L. Mills: Phys. Rev. B18, 5637 (1978)

    Google Scholar 

  13. D. Chattopadhyay, H.J. Queisser: Rev. Mod. Phys. 53, 745 (1981)

    Google Scholar 

  14. S. Komiyama, T. Kurosawa, T. Masumi: In Hot-Electron Transport in Semiconductors, ed. by L. Reggiani (Springer, Berlin, Heidelberg 1985) p. 177

    Google Scholar 

  15. E.J. Ryder: Phys. Rev. 90, 766 (1953)

    Google Scholar 

  16. W.E. Pinson, R. Bray: Phys. Rev. 136, A1449 (1964)

  17. T. Kurosawa: J. Phys. Soc. Jpn. 21, Suppl. 425 (1966)

  18. G. Bauer, F. Kuchar: Phys. Stat. Sol. (a) 13, 169 (1972)

    Google Scholar 

  19. E. Conwell: In High Field Transport in Seminonductors, Solid State Phys., Suppl. 9, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1967)

    Google Scholar 

  20. A. Neukerman, G.S. Kino: Phys. Rev. B7, 2703 (1973)

    Google Scholar 

  21. R.C. Curby, D.K. Ferry: Phys. Stat. Sol. (a) 20, 569 (1973)

    Google Scholar 

  22. A. Dargys, R. Sedrakyan, J. Pozhela: Phys. Stat. Sol. (a) 45, 387 (1978)

    Google Scholar 

  23. A.G. Chynoweth: Semiconductors and Semimetals 4, 263 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. H.-J. Queisser on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocevar, P., Flores, F. On the possibility of wake-field effects in the conductivity of doped semiconductors. Appl. Phys. A 54, 132–138 (1992). https://doi.org/10.1007/BF00323899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323899

PACS

Navigation